Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural tissue inhibitor of metalloproteinases (TIMPs). When overexpression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor and have demonstrated inhibition of MMP-1, -2, -3, and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC₅₀s that was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor, or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid, we observed partial inhibition in proteolytic activity suggesting this approach may prove useful in rebalancing MMPs within chronic wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.33027 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China.
Objective: Diabetic neuropathy (DN), a common and debilitating complication of diabetes, significantly impairs the quality of life of affected individuals. While multiple studies have indicated changes in the expression of specific matrix metalloproteinases (MMPs) in patients with DN, and basic research has reported the impact of MMPs on DN, there is a lack of systematic research and the causal relationship remains unclear. The objective of this research is to investigate the casual relationship between MMPs and DN through two-sample Mendelian randomization (MR).
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2025
Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.
Objective: This cross-sectional study aimed to investigate the salivary profile of inflammatory mediators in individuals with periodontal and peri-implant disease as compared to individuals with periodontal and peri-implant health.
Materials And Methods: Saliva samples were collected from 155 participants (mean age 63.3 ± 11.
Int Angiol
December 2024
Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -
The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder characterized by basement membrane disruption, which plays a crucial role in its pathogenesis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the degradation of the basement membrane. The specific MMPs secreted by keratinocytes in OLP lesions and relevant regulatory mechanisms are not fully understood.
View Article and Find Full Text PDFPLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!