Saponins are secondary metabolites that are widely distributed in the plant kingdom and are often the active components in medicinal herbs. Hence, saponins have a potential for the pharmaceutical industry as antibacterial, virucidal, anti-inflammatory, and anti-leishmanial drugs. However, their commercial application is often hindered because of practical problems, such as low and variable yields and limited availability of natural resources. In vitro cultures provide an alternative to avoid problems associated with field production; they offer a system in which plants are clonally propagated and yield is not affected by environmental changes. Additionally, treatment of in vitro cultures with elicitors such as methyl jasmonate may increase the production of saponins up to six times. In vitro cultures are amenable to metabolic engineering by targeting specific genes to enhance saponin production or drive production towards one specific class of saponins. Hitherto, this approach is not yet fully explored because only a limited number of saponin biosynthesis genes are identified. In this paper, we review recent studies on in vitro cultures of saponin-producing plants. The effect of elicitation on saponin production and saponin biosynthesis genes is discussed. Finally, recent research efforts on metabolic engineering of saponins will also be presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-010-9129-3 | DOI Listing |
J Anim Sci
January 2025
Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany 389 01, Czech Republic.
Ovulation, fertilization, and embryo development are orchestrated and synchronized processes essential for the optimal health of offspring. Post-ovulatory aging disrupts this synchronization and impairs oocyte quality. In addition, oocyte aging causes fertilization loss and poor embryo development.
View Article and Find Full Text PDFBiochem J
January 2025
Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases. It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China.
Purpose: R-spondin3 (RSPO3), a mammalian-specific amplifier of WNT signaling pathway, maintains the homeostasis of various adult stem cells. However, its expression at the limbus and the effect on limbal epithelial stem cells (LESCs) remains unclear. We investigated the impact of RSPO3 on the proliferation and self-renewal of LESCs and explored its molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!