In the present study, enzyme urease has been immobilized on amine-functionalized gold nanoparticles (AuNPs). AuNPs were synthesized using natural precursor, i.e., clove extract and amine functionalized through 0.004 M L: -cysteine. Enzyme (urease) was extracted and purified from the vegetable waste, i.e., seeds of pumpkin to apparent homogeneity (sp. activity 353 U/mg protein). FTIR spectroscopy and transmission electron microscopy was used to characterize the immobilized enzyme. The immobilized enzyme exhibited enhanced activity as compared with the enzyme in the solution, especially, at lower enzyme concentration. Based on the evaluation of activity assay of the immobilized enzyme, it was found that the immobilized enzyme was quite stable for about a month and could successfully be used even after eight cycles having enzyme activity of about 47%. In addition to this central composite design (CCD) with the help of MINITAB version 15 Software was utilized to optimize the process variables viz., pH and temperature affecting the enzyme activity upon immobilization on AuNPs. The results predicted by the design were found in good agreement (R2 = 96.38%) with the experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed the individual and cumulative effect of pH and temperature on enzyme activity indicating that the activity increased with the increase of pH up to 7.5 and temperature 75 °C. The effects of each variables represented by main effect plot, 3D surface plot, isoresponse contour plot and optimized plot were helpful in predicting results by performing a limited set of experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-011-0514-2 | DOI Listing |
Toxins (Basel)
November 2024
Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR "Demokritos", 15341 Aghia Paraskevi, Greece.
Aflatoxin M1 (AFM1) exposure through dairy products is associated with adverse health effects, including hepatotoxicity and carcinogenicity. Therefore, the AFM1 presence in milk and dairy products is strictly regulated. In this context, the current work focuses on the investigation of different competitive enzyme immunoassay configurations for the determination of AFM1 in milk with high sensitivity and short assay duration.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia.
Antibiotics play a crucial role in human and animal medical healthcare, but widespread use and overuse of antibiotics poses alarming health and environmental issues. Fluoroquinolones constitute a class of antibiotics that has already become ubiquitous in the environment, and their increasing use and high persistence prompt growing concern. Here we investigated a fungal secretome prepared from the white-rot fungus , which is able to effectively degrade the environmentally persistent fluoroquinolone, levofloxacin.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Physical Chemistry-Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania.
Hyaluronic acid-based hydrogels are emerging as highly versatile materials for cost-effective biosensors, capable of sensitive chemical and biological detection. These hydrogels, functionalized with specific groups, exhibit sensitivity modulated by factors such as temperature, pH, and analyte concentration, allowing for a broad spectrum of applications. This study presents a patent-centered overview of recent advancements in hyaluronic acid hydrogel biosensors from 2003 to 2023.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!