A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. | LitMetric

Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice.

Diabetologia

Diabetes Research Group, Division of Diabetes and Nutrition, School of Medicine, King's College London, London, SE1 1UL, UK.

Published: May 2011

Aims/hypothesis: Recent studies have shown that mesenchymal stem cells (MSCs) secrete several factors that improve survival and function of transplanted islets. Implantation of islets beneath the kidney capsule results in morphological changes, due to interactions of the graft with the host, thus impairing islet function. We co-transplanted MSCs with islets to determine their effects on the remodelling process and studied graft function in a mouse model of minimal islet mass.

Methods: Islets were syngeneically transplanted, either alone or with kidney-derived MSCs, underneath the kidney capsule of streptozotocin-induced diabetic C57Bl/6 mice. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests carried out. Hormone contents of grafts and pancreas were assessed by radioimmunoassay. Graft morphology and vascularisation were evaluated by immunohistochemistry.

Results: MSCs improved the capacity of islet grafts to reverse hyperglycaemia, with 92% of mice co-transplanted with MSCs reverting to normoglycaemia, compared with 42% of those transplanted with islets alone. Average blood glucose concentrations were lower throughout the 1 month monitoring period in MSC co-transplanted mice. MSCs did not alter graft hormone content. Islets co-transplanted with MSCs maintained a morphology that more closely resembled that of islets in the endogenous pancreas, both in terms of size, and of endocrine and endothelial cell distribution. Vascular engraftment was superior in MSC co-transplanted mice, as shown by increased endothelial cell numbers within the endocrine tissue.

Conclusions/interpretation: Co-transplantation of islets with MSCs had a profound impact on the remodelling process, maintaining islet organisation and improving islet revascularisation. MSCs also improved the capacity of islets to reverse hyperglycaemia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-011-2053-4DOI Listing

Publication Analysis

Top Keywords

co-transplanted mscs
12
mscs
9
islets
9
mesenchymal stem
8
stem cells
8
islet organisation
8
transplanted islets
8
kidney capsule
8
remodelling process
8
blood glucose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!