There is an increasing need to develop optofluidic flow cytometers. Optofluidics, where optics and microfluidics work together to create novel functionalities on a small chip, holds great promise for lab-on-a-chip flow cytometry. The development of a low-cost, compact, handheld flow cytometer and microfluorescence-activated cell sorter system could have a significant impact on the field of point-of-care diagnostics, improving health care in, for example, underserved areas of Africa and Asia, that struggle with epidemics such as HIV∕AIDS. In this paper, we review recent advancements in microfluidics, on-chip optics, novel detection architectures, and integrated sorting mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026024PMC
http://dx.doi.org/10.1063/1.3511706DOI Listing

Publication Analysis

Top Keywords

optofluidic flow
8
flow cytometer
8
review article
4
article advancements
4
advancements optofluidic
4
flow
4
cytometer increasing
4
increasing develop
4
develop optofluidic
4
flow cytometers
4

Similar Publications

In this Letter, we have proposed an all-optical scheme for chiral particle separation with a microcylinder-pair system (MCPS) with a micrometer scale channel, applicable in microfluidic environments. By illuminating the MCPS with two counter-incident plane waves of orthogonal polarization, the electromagnetic chirality gradient can be generated. The MCPS can also enhance chirality-dependent lateral optical forces of the coupled fields so that the setup can shift trapping equilibrium positions for opposite-handedness nanoparticles and make the sideways motion observable.

View Article and Find Full Text PDF

Investigation and insights on the on-demand generation of monodispersed emulsion droplets from a floating capillary-based open microfluidic device.

J Chem Phys

November 2024

Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Article Synopsis
  • This study presents a new method for creating uniform droplets in the picoliter to nanoliter range, crucial for effective microreactors in chemical and biomedical applications.
  • A floating capillary-based open microfluidic device (FCOMD) is introduced, utilizing an angled capillary to control droplet formation by adjusting specific parameters.
  • The FCOMD significantly increases droplet production efficiency compared to traditional methods, enabling the creation of various types of droplets and highlighting its potential use across diverse industries like materials science, food, and pharmaceuticals.
View Article and Find Full Text PDF

Recent Advancements in Nanophotonics for Optofluidics.

Adv Phys X

October 2024

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA.

Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing.

View Article and Find Full Text PDF

Background: All living organisms exist in a world affected by many external influences, especially water and light. Photonic nanostructures present in certain insects, have evolved over time in response to diverse environmental conditions, facilitating communication within and between species, camouflage, thermoregulation, hydration, and more. Up to now, only a few insect species have been discovered whose elytron changes its color due to permeation of water (or its vapor) through cuticle.

View Article and Find Full Text PDF

In this study, we developed an optofluidic chip consisting of a guided-mode resonance (GMR) sensor incorporated into a microfluidic chip to achieve simultaneous blood plasma separation and label-free albumin detection. A sedimentation chamber is integrated into the microfluidic chip to achieve plasma separation through differences in density. After a blood sample is loaded into the optofluidic chip in two stages with controlled flow rates, the blood cells are kept in the sedimentation chamber, enabling only the plasma to reach the GMR sensor for albumin detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!