A superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T(c). It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T(c). Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T(c). Our study reveals that this pseudogap state is induced by superconducting fluctuations and favoured by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state and other contributions in the layered high-temperature superconductor compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms1140 | DOI Listing |
Adv Mater
December 2024
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Leveraging the reciprocal-space proximity effect between superconducting bulk and topological surface states (TSSs) offers a promising way to topological superconductivity. However, elucidating the mutual influence of bulk and TSSs on topological superconductivity remains a challenge. Here, we report pioneering transport evidence of a thickness-dependent transition from conventional to unconventional superconductivity in 2M-phase WS (2M-WS).
View Article and Find Full Text PDFSci Adv
November 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
We uncover a superconducting state with partial spin polarization induced by a magnetic field. This state, which we call "magnonic superconductor," lacks a conventional pairing order parameter but is characterized instead by a composite order parameter that represents the binding of electron pairs and magnons. We rigorously demonstrate the existence of magnonic superconductivity with high transition temperature in one-dimensional and two-dimensional Hubbard models with repulsive interaction.
View Article and Find Full Text PDFNat Commun
November 2024
School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr/NbSe ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr/NbSe by an ultralow temperature scanning tunneling microscope with higher spatial and energy resolutions.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Superconductors based on transition metal dichalcogenides are of substantial current relevance towards the material realization of topological superconductivity. Here, we report a detailed study on the synthesis and characterization of single crystals of 2H-TaSeS. A superconducting transition is confirmed at4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!