Background: Interstitial cells of Cajal (ICCs), which express c-Kit receptor tyrosine kinase (KIT), play an important role in gastrointestinal motility. Loss of ICCs likely contributes to diabetic gastrointestinal motility disorder, however, the mechanism of attrition remains unknown. Here, we test the hypothesis that the bone marrow-derived progenitors are an important source of intestinal ICCs and that decreased homing of these progenitors in diabetes contributes to ICC diminution.
Methods: Wild type mice were X-ray irradiated, transplanted with bone marrow (BMT) from green fluorescence protein (GFP)-transgenic (TG)-mice and subsequently made diabetic by streptozotocin (STZ) injection. Intestinal homing of GFP-positive bone marrow-derived cells was examined 2 or 5 months after STZ treatment.
Results: In the BMT-mice, we found many GFP-positive bone marrow-derived cells (BMDCs) in most parts of the intestinal area, the number of BMDCs was significantly decreased in diabetic mice compared with nondiabetic controls. As a representative area, we further examined the myenteric plexus of the proximal small intestine, and found that the cell numbers of ICCs marked by c-Kit-positive immunoreactivity were decreased by more than 40% in diabetic versus nondiabetic mice. Furthermore, numbers of c-Kit+/GFP+ and c-Kit+/GFP- cells were similar in nondiabetic mice, and decreased by 45.8% and 42.0%, respectively, in diabetic mice.
Conclusion: These results suggest that the decreased homing from the bone marrow is a major cause of ICC loss in the intestine in diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321643 | PMC |
http://dx.doi.org/10.1111/j.1440-1746.2011.06670.x | DOI Listing |
Sci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico. Electronic address:
Mast cells (MC) are crucial effectors in immediate allergic reactions. Monomeric IgE sensitizes MC and triggers various signaling responses. FcεRI/IgE/antigen crosslinking induces the release of several mediators, including bioactive lipids, but little is known about endocannabinoids (eCBs) secretion.
View Article and Find Full Text PDFJ Plast Reconstr Aesthet Surg
November 2024
Bagcilar Training and Research Hospital, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
Objective: Autoimmune diseases are systemic conditions that can have negative effects on wound healing. The objective of the present study was to investigate the efficacy of combining bone marrow-derived mesenchymal stem cells (BM-MSCs), acellular dermal matrix (ADM), split-thickness skin graft (STSG), and negative-pressure wound therapy (NPWT) for treating patients with autoimmune diseases and chronic non-healing wounds.
Methods: Thirty-four patients with autoimmune diseases and non-healing chronic wounds of the lower extremities between 2012 and 2023 were included in the study.
Biomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!