Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation with an LNA residue at G2056. The bottom strand (nine to 19 nucleotides in length) was required for methylation and was still functional after extensive modification, including substitution with a DNA sequence. Although it remains possible that Erm makes some unspecific contact with the bottom strand, the main role played by the bottom strand appears to be in maintaining the conformation of the top strand. The addition of multiple LNA residues to the top strand impeded methylation; this indicates that the RNA substrate requires a certain amount of flexibility for accommodation into the active site of Erm. The combinatorial approach for identifying small but functional RNA substrates is a step towards making RNA-Erm complexes suitable for cocrystal determination, and for designing molecules that might block the substrate-recognition site of the enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201000606DOI Listing

Publication Analysis

Top Keywords

top strand
12
bottom strand
12
erm methyltransferases
8
required methylation
8
erm
7
strand
6
methylation
5
minimal substrate
4
substrate features
4
features erm
4

Similar Publications

Schistosomosis in animals due to significantly burdens India's livestock economy because of high prevalence and morbidity and is mostly underdiagnosed from the lack of sensitive tools for field-level detection. This study aimed to clone, express the 22.6-kDa tegument protein of (rSs22.

View Article and Find Full Text PDF

Characterization of Guest DNA Transport and Adsorption within Host Porous Protein Crystals.

Langmuir

December 2024

Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.

Nucleic acid transport through protein-based pores is a well-characterized phenomenon due in part to advancements in nanopore sequencing. A less studied area is nucleic acid transport through extended protein-based channels, where the additional surface area and increased contact time allow for the study of prolonged binding interactions. Porous protein crystals composed of "CJ", a putative polyisoprenoid-binding protein from , represent a favorable, highly ordered material for studying DNA transport and binding/unbinding along protein-based channels.

View Article and Find Full Text PDF

Strandings and at sea observations reveal the canary archipelago as an important habitat for pygmy and dwarf sperm whale.

Adv Mar Biol

November 2024

Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain.

Cetaceans are a critical component of marine ecosystems, acting as top predators in mesopelagic trophic webs. In the Macaronesian biogeographical region, cetacean populations face threats from various anthropogenic activities. Evaluating cryptic oceanic species like kogiids whales is challenging due to insufficient biological and ecological data, making conservation assessments and management efforts harder to achieve.

View Article and Find Full Text PDF

High throughput parameter estimation and uncertainty analysis applied to the production of mycoprotein from synthetic lignocellulosic hydrolysates.

Curr Res Food Sci

October 2024

Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom.

The current global food system produces substantial waste and carbon emissions while exacerbating the effects of global hunger and protein deficiency. This study aims to address these challenges by exploring the use of lignocellulosic agricultural residues as feedstocks for microbial protein fermentation, focusing on A3/5, a mycelial strain known for its high protein yield and nutritional quality. We propose a high throughput microlitre batch fermentation system paired with analytical chemistry to generate time series data of microbial growth and substrate utilisation.

View Article and Find Full Text PDF

Undifferentiated pleomorphic sarcoma (UPS) and related tumors are the most common type of soft tissue sarcoma. However, this spectrum of tumors has different etiologies with varying rates of metastasis and survival. Two dermal-based neoplasms in this class of pleomorphic sarcomas, atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS), are challenging to differentiate at initial biopsy but vary significantly in prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!