Osteopontin: correlation with phagocytosis by brain macrophages in a rat model of stroke.

Glia

Department of Anatomy, Integrative Research Support Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea.

Published: March 2011

Osteopontin (OPN) is an adhesive glycoprotein linked to a variety of pathophysiological processes. We investigated whether OPN might act as an opsonin in the diseased brain by studying the postischemic expression and localization of OPN mRNA and protein in a rat model of ischemic stroke. In addition, we characterized the subcellular localization of OPN protein in the ischemic brain core. Induction of OPN mRNA occurred in activated microglia/macrophages in the ischemic core on days 3-7 after reperfusion and this was sustained up to day 28, at least. OPN protein was synthesized and secreted by brain macrophages, which first surrounded damaged striatal white matter tracts and then infiltrated into them. Punctate OPN-immunoreactive profiles were scattered throughout the infarction core except in white matter bundles. Electron microscopy showed the localization of OPN protein along the membranes lining what appeared to be the debris of dead neurons. These were located in the extracellular space and within the cytoplasm of brain macrophages, indicating that the OPN protein accumulated selectively on the surface of dead cells, most of which were phagocytosed subsequently by brain macrophages. However, no significant induction of OPN occurred in degenerating striatal white matter tracts or in brain macrophage-engulfed axonic or myelin debris. These data suggest that OPN secreted by brain macrophages in this rat model of stroke might be involved in the phagocytosis of fragmented cell debris and possibly not in the phagocytosis of axonic or myelin debris.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.21110DOI Listing

Publication Analysis

Top Keywords

brain macrophages
20
opn protein
16
rat model
12
localization opn
12
white matter
12
opn
10
brain
8
macrophages rat
8
model stroke
8
opn mrna
8

Similar Publications

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Exploring nagZ as a virulence biomarker and treatment target in Enterobacter cloacae.

BMC Microbiol

January 2025

Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.

Background: Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood.

Results: In this study, we explored the role of nagZ in regulating the virulence of E.

View Article and Find Full Text PDF

Inhibition of AXL ameliorates pulmonary fibrosis attenuation of M2 macrophage polarization.

Eur Respir J

January 2025

Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.

Rationale: Although a relationship between the Gas6/AXL pathway and pulmonary fibrosis (PF) has been suggested, the precise mechanisms and clinical implications of the AXL pathway in idiopathic pulmonary fibrosis (IPF) are still unclear.

Methods: Constitutive and conditional AXL-knockout mice were generated and injected with bleomycin (BLM) to induce pulmonary fibrosis. The expression of AXL and macrophage subtypes in BLM-injected mice and patients with IPF was analysed using flow cytometry.

View Article and Find Full Text PDF

Exploring the relationship between MGAT2 and glioblastoma: A Mendelian Randomization and bioinformatics approach.

Brain Res

January 2025

Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, China. Electronic address:

Background: Mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase 2 (MGAT2) and tumors' relevant research was in full swing recently. Therefore, we employed Mendelian Randomization (MR) alongside bioinformatics to thoroughly investigate the possible relationship between MGAT2 and glioblastoma (GBM).

Methods: We utilized the summary statistics of genome-wide association studies (GWAS) for MGAT2 (N = 35,559 from deCODE) and glioblastoma (N = 379,155 from FinnGen).

View Article and Find Full Text PDF

Systemically administered platelet-inspired nanoparticles to reduce inflammation surrounding intracortical microelectrodes.

Biomaterials

January 2025

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States. Electronic address:

Intracortical microelectrodes (IMEs) are essential for neural signal acquisition in neuroscience and brain-machine interface (BMI) systems, aiding patients with neurological disorders, paralysis, and amputations. However, IMEs often fail to maintain robust signal quality over time, partly due to neuroinflammation caused by vascular damage during insertion. Platelet-inspired nanoparticles (PIN), which possess injury-targeting functions, mimic the adhesion and aggregation of active platelets through conjugated collagen-binding peptides (CBP), von Willebrand Factor-binding peptides (VBP), and fibrinogen-mimetic peptides (FMP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!