Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency because a large fraction of power is lost to surface plasmons (SPs) and waveguide modes. In this paper it is demonstrated that periodic grating structures with almost µm-scale can be used to extract SPs as well as waveguide modes and therefore enhance the outcoupling efficiency in light-emitting thin film structures. The gratings are fabricated by nanoimprint lithography using a commercially available diffraction grating as a mold which is pressed into a polymer resist. The outcoupling of SPs and waveguide modes is detected in fluorescent organic films adjacent to a thin metal layer in angular dependent photoluminescence measurements. Scattering up to 5th-order is observed and the extracted modes are identified by comparison to the SP and waveguide dispersion obtained from optical simulations. In order to demonstrate the low-cost, high quality and large area applicability of grating structures in optoelectronic devices, we also present SP extraction using a grating structure fabricated by a common DVD stamp.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.0000A7DOI Listing

Publication Analysis

Top Keywords

waveguide modes
16
surface plasmons
8
organic light-emitting
8
outcoupling efficiency
8
sps waveguide
8
grating structures
8
waveguide
5
modes
5
light extraction
4
extraction surface
4

Similar Publications

Prediction and observation of topological modes in fractal nonlinear optics.

Light Sci Appl

January 2025

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.

This item from the News and Views (N&V) category aims to provide a summary of theoretical and experimental results recently published in ref. , which demonstrates the creation of corner modes in nonlinear optical waveguides of the higher-order topological insulator (HOTI) type. Actually, these are second-order HOTIs, in which the transverse dimension of the topologically protected edge modes is smaller than the bulk dimension (it is 2, in the case of optical waveguide) by 2, implying zero dimension of the protected modes, which are actually realized as corner or defect ones.

View Article and Find Full Text PDF

Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality.

ACS Nano

December 2024

Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL 1098XG Amsterdam, The Netherlands.

Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Chip-Scale Aptamer Sandwich Assay Using Optical Waveguide-Assisted Surface-Enhanced Raman Spectroscopy.

Nanomaterials (Basel)

November 2024

Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.

Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proximity to the waveguide surface. The Raman signal was enhanced by plasmon resonance due to the NPs close to the waveguide surface.

View Article and Find Full Text PDF

Transmissible topological edge states based on Su-Schrieffer-Heeger photonic crystals with defect cavities.

Nanophotonics

April 2024

State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China.

Topological photonic crystals have great potential in the application of on-chip integrated optical communication devices. Here, we successfully construct the on-chip transmissible topological edge states using one-dimensional Su-Schrieffer-Heeger (SSH) photonic crystals with defect cavities on silicon-on-insulator slab. Different coupling strengths between the lateral modes and diagonal modes in photonic crystal defect cavities are used to construct the SSH model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!