Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a numerical and experimental demonstration of a waveguide regime in a broad band spectral range for the hollow core microstructured optical fibers (HC MOFs) made of silica with a negative curvature of the core boundary. It is shown that HC MOFs with the cladding consisting only of one row of silica capillaries allows to guide light from the near to mid infrared despite of high material losses of silica in this spectral region. Such result can be obtained by a special arrangement of cladding capillaries which leads to a change in the sign of the core boundary curvature. The change in the sign of the core boundary curvature leads to a loss of simplicity of boundary conditions for core modes and to "localization" and limitation of their interaction with the cladding material in space. Such HC MOFs made of different materials can be potential candidates for solving problem of ultra high power transmission including transmission of CO and CO2 laser radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.001441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!