Etched beam splitters in InP/InGaAsP.

Opt Express

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.

Published: January 2011

AI Article Synopsis

  • An etched beam splitter (EBS) using frustrated total internal reflection (FTIR) is created based on InP/InGaAsP materials, noted for its small size (8x11 μm) and versatile coupling ratios.
  • A pre-etching process enables precise control of coupling gaps, resulting in couplers with low insertion loss (1-2.6 dB) and minimal transmission cross-coupling (≤ 10%).
  • The EBS shows stable performance across the C-band, making it ideal for wavelength division multiplexing and is successfully integrated with semiconductor optical amplifiers and phase modulators to create tunable channelizing filters and an EBS-coupled ring laser.

Article Abstract

An etched beam splitter (EBS) photonic coupler based on frustrated total internal reflection (FTIR) is designed, fabricated and characterized in the InP/InGaAsP material system. The EBS offers an ultra compact footprint (8x11 μm) and a complete range of bar/cross coupling ratio designs. A novel pre-etching process is developed to achieve sufficient depth of the etched coupling gaps. Fabricated EBS couplers demonstrate insertion loss between 1 and 2.6 dB with transmission (cross-coupling) ≤ 10%. The results show excellent agreement with 3D finite-difference time-domain (FDTD) modeling. The coupling of EBS has weak wavelength dependence in the C-band, making it suitable for wavelength division multiplexing (WDM) or other wide bandwidth applications. Finally, the EBS is integrated with active semiconductor optical amplifier (SOA) and phase-modulator components; using a flattened ring resonator structure, a channelizing filter tunable in both amplitude and center frequency is demonstrated, as well as an EBS coupled ring laser.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.000717DOI Listing

Publication Analysis

Top Keywords

etched beam
8
ebs
6
beam splitters
4
splitters inp/ingaasp
4
inp/ingaasp etched
4
beam splitter
4
splitter ebs
4
ebs photonic
4
photonic coupler
4
coupler based
4

Similar Publications

It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.

View Article and Find Full Text PDF

Passive temperature sensing systems based on the Internet of Things (IoT) present an efficient, reliable, and convenient solution for temperature monitoring with extensive application prospects and market value. This paper introduces a passive, battery-free, chipless, metasurface temperature sensing tag. The key insight is that the sensing tag uses vanadium dioxide ([Formula: see text]) to solve the problems of measuring distance, large size, and high cost related to active devices.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.

A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E and E mode selective output. The beam propagation method is used in design optimization.

View Article and Find Full Text PDF

Optimization of Soft X-Ray Fresnel Zone Plate Fabrication Through Joint Electron Beam Lithography and Cryo-Etching Techniques.

Nanomaterials (Basel)

November 2024

Nanotechnology Group, USAL-Nanolab, Departamento de Física Fundamental, Universidad de Salamanca (USAL), E-37008 Salamanca, Spain.

The ability to manufacture complex 3D structures with nanometer-scale resolution, such as Fresnel Zone Plates (FZPs), is crucial to achieve state-of-the-art control in X-ray sources for use in a diverse range of cutting-edge applications. This study demonstrates a novel approach combining Electron Beam Lithography (EBL) and cryoetching to produce silicon-based FZP prototypes as a test bench to assess the strong points and limitations of this fabrication method. Through this method, we obtained FZPs with 100 zones, a diameter of 20 µm, and an outermost zone width of 50 nm, resulting in a high aspect ratio that is suitable for use across a range of photon energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!