Phase-shifting interferometry based on induced vibrations.

Opt Express

Laboratorio de Instrumentación Espacial, Instituto Nacional de Técnica Aeroespacial, Madrid, Spain.

Published: January 2011

The presence of uncontrolled mechanical vibrations is typically the main precision-limiting factor of a phase-shifting interferometer. We present a method that instead of trying to insolate vibrations; it takes advantage of their presence to produce the different phase-steps. The method is based on spatial and time domain processing techniques to compute first the different unknown phase-steps and then reconstruct the phase from these tilt-shifted interferograms. In order to compensate the camera movement, it is needed to perform an affine registration process between the different interferograms. Simulated and experimental results demonstrate the effectiveness of the proposed technique without the use of any phase-shifter device.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.000584DOI Listing

Publication Analysis

Top Keywords

phase-shifting interferometry
4
interferometry based
4
based induced
4
induced vibrations
4
vibrations presence
4
presence uncontrolled
4
uncontrolled mechanical
4
mechanical vibrations
4
vibrations typically
4
typically main
4

Similar Publications

Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.

View Article and Find Full Text PDF

Precise dynamic single-frame interferometry based on virtual phase shifting technique remains challenging due to the difficulty in satisfying the requirements for the quality and amount of fine-grained fringe's interferograms. Here we introduce a novel deep learning architecture, the Transformer Encoder-Convolution Decoder Phase Shift Network (TECD-PSNet), that achieves high-fidelity interferogram reconstruction. TECD-PSNet seamlessly integrates the strengths of transformer blocks in capturing global descriptions and convolution blocks in efficient feature extraction.

View Article and Find Full Text PDF

In this study, we present lateral scanning white light interferometry (LS-WLI), where phase-shifting algorithms are applied to inspect the topography of a large field of view (FOV) with high-speed measurements. At a point, the interference signal must be acquired with a specific condition to adapt the phase-shifting algorithm. This means that all points have two points, of which the phase difference is π/2, when the number of points acquired in a phase period is multiple of 4, despite increasing the data points in a period.

View Article and Find Full Text PDF

Quantitative phase microscopies: accuracy comparison.

Light Sci Appl

October 2024

Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.

Article Synopsis
  • Quantitative phase microscopies (QPMs) enhance bio-imaging by providing critical data on mass distribution and transport, which is not achievable through fluorescence techniques and are label-free, avoiding issues like photobleaching.!*
  • The review compares eight QPM techniques, including digital holographic microscopy and phase-shifting interferometry, focusing on their accuracy and measurement capabilities using a custom-developed numerical toolbox for simulations.!*
  • Results indicate that DHM and PSI are robust against artefacts but can be affected by coherent noise, while other techniques show a balance between measurement precision and accuracy, with some experiencing limitations due to inherent artefacts, especially with larger samples like eukaryotic cells.!*
View Article and Find Full Text PDF

To expand the reliability of interferometry technology, this paper proposes a random two-frame algorithm with high accuracy, high robustness, and immunity to tilt phase-shift. This method uses the equivalence of inter-frame phase-shift and intra-frame phase difference to mine light intensity pixels carrying new phase-shift from different images. Then, the linear random phase-shift plane is fitted by least squares, and the inverse tangent relationship is used to obtain a high-precision phase distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!