Polarization-sensitive optical frequency domain imaging based on unpolarized light.

Opt Express

Department of Mechanical Engineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea.

Published: January 2011

Polarization-sensitive optical coherence tomography (PS-OCT) is an augmented form of OCT, providing 3D images of both tissue structure and polarization properties. We developed a new method of polarization-sensitive optical frequency domain imaging (PS-OFDI), which is based on a wavelength-swept source. In this method the sample was illuminated with unpolarized light, which was composed of two orthogonal polarization states (i.e., separated by 180° in the Poincaré sphere) that are uncorrelated to each other. Reflection of these polarization states from within the sample was detected simultaneously and independently using a frequency multiplexing scheme. This simultaneous sample probing with two polarization states enabled determination of the depth-resolved Jones matrices of the sample. Polarization properties of the sample were obtained by analyzing the sample Jones matrices through eigenvector decomposition. The new PS-OFDI system ran at 31K wavelength-scans/s with 3072 pixels per wavelength-scan, and was tested by imaging a polarizer and several birefringent tissues such as chicken muscle and human skin. Lastly the new PS-OFDI was applied to imaging two cancer animal models: a mouse model by injecting cancer cells and a hamster cheek pouch model. These animal model studies demonstrated the significant differences in tissue polarization properties between cancer and normal tissues in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.000552DOI Listing

Publication Analysis

Top Keywords

polarization-sensitive optical
12
polarization properties
12
polarization states
12
optical frequency
8
frequency domain
8
domain imaging
8
unpolarized light
8
jones matrices
8
polarization
6
sample
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!