Several mitogen-activated protein kinases (MAPKs) are activated during thermal injury, and the p38 MAPK is specifically involved in endothelial cell (EC) actin and myosin rearrangement (stress-fiber formation) with ensuing cellular contraction and enhanced vessel permeability. Inhibition of p38 MAPK and extracellular signal-related kinase MAPK by their inhibitors SB203580 and PD98059, respectively, significantly reduces burn serum-induced EC stress-fiber formation, whereas SB203580 also inhibits burn serum-induced EC tight-junction damage and thereby general blood vessel hyperpermeability. The JNK MAPK inhibitor, SP600125, on the contrary, influences neither stress-fiber formation nor EC tight-junction damage. Extracellular signal-related kinase MAPK inhibition significantly decreases burn serum-induced Monocyte chemotactic protein-1 (MCP-1) release, whereas SB203580 and SP600125 have only limited such effects. Western blotting, real-time reverse transcriptase-polymerase chain reaction, and confocal laser scanning microscopy proved that SP600125 significantly inhibits burn serum-induced intercellular adhesion molecule 1 expression, whereas SB203580 depresses the expression of P selectin. In vivo studies, using the dominant negative adenoviral approach of MAPK kinase 3b and MAPK kinase 6b to block p38 MAPKs, and MKK4 and MKK7 to block JNK MAPKs, show that the latter MAPKs are involved in the regulation of P selectin and intercellular adhesion molecule 1 expression, respectively, following thermal injury. Taken together, the results suggest that several MAPKs play important, although different, roles in general EC alterations following burn injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0b013e31820e041f | DOI Listing |
Int J Mol Sci
June 2024
Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.
Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2015
Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China. Electronic address:
F-actin rearrangement is an early event in burn-induced endothelial barrier dysfunction. HSP27, a target of p38 MAPK/MK2 pathway, plays an important role in actin dynamics through phosphorylation. The question of whether HSP27 participates in burn-related endothelial barrier dysfunction has not been identified yet.
View Article and Find Full Text PDFBraz J Med Biol Res
May 2015
Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
Wound Repair Regen
October 2014
Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Intensive insulin therapy during critical illness protects the endothelium and thereby prevents organ failure. This study tested the hypothesis that insulin directly affects the attenuation of burn injury-induced damage to pulmonary endothelial tight junction and investigated the underlying mechanisms. Sprague Dawley rats with severe burn injury were randomized to treatment with insulin dissolved in normal saline (maintenance of blood glucose at a level between 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!