Silk fibroin conduits were designed with appropriate porosity for peripheral nerve repair. The aim of this work was to use these conduits to examine cell inflammatory responses and functional recovery in a sciatic nerve defect model. A total of 45 randomized Lewis rats were used to create an 8-mm defect bridged by a silk guide, commercial collagen guide, or an autograft. After 1, 4, and 8 weeks, macrophage recruitment, percentage of newly formed collagen, number of myelinated axons, and gastrocnemius muscle mass were evaluated. Following 8 weeks, ED1+ cells in autograft and silk conduits decreased to <1% and 17% of week 1 values, respectively. Collagen formation revealed no difference for all measured time points, suggesting a similar foreign body response. Myelinated axon counts within the silk guide revealed a greater number of proximal spouts and distal connections than collagen guides. Gastrocnemius weights demonstrated a 27% decrease between silk and autografts after 8 weeks. This study demonstrates that, in addition to tailorable degradation rates, our silk conduits possess a favorable immunogenicity and remyelination capacity for nerve repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090669PMC
http://dx.doi.org/10.1097/SAP.0b013e3181e6cff7DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
fibroin conduits
8
peripheral nerve
8
nerve repair
8
silk
4
conduits
4
conduits cellular
4
cellular functional
4
functional assessment
4
assessment peripheral
4

Similar Publications

Application of lanthanum-modified silk fibroin/polyvinyl alcohol film for highly selective defluoridation in brick tea infusion.

Int J Biol Macromol

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, Joint Research Center for Food Nutrition and Health of IHM and Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, Anhui Agricultural University, Hefei 230036, PR China; College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

To mitigate the risk associated with water-soluble fluoride in tea and to have less influence on the contents of tea infusion, a highly selective lanthanum modified silk fibroin (SF) and polyvinyl alcohol (PVA) composite film (SF/PVA-La) was prepared to remove fluoride from brick tea infusion. Notably, SF/PVA-La could remove about 48 % of the fluoride from in brick tea infusion within 30 min. Importantly, the reduction in total tea polyphenols in brick tea did not exceed 10 %, and the reduction in caffeine was only 0.

View Article and Find Full Text PDF

Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is a prevalent joint disorder that leads to cartilage breakdown, causing significant pain and potential deformities, with current treatment options showing limitations.
  • Cartilage organoids, which mimic natural cartilage structures, can help advance OA research and serve as effective fillers for cartilage repair due to their three-dimensional properties and structure.
  • Silk fibroin (SF)-based hydrogels are highlighted as ideal materials for creating these organoids, providing excellent mechanical properties and biocompatibility, and their development is enhanced through artificial intelligence for optimized treatment solutions.
View Article and Find Full Text PDF

This work investigated the production and characterization of a silk fibroin (SF) hydrogel incorporated with an (AV) extract. Four extraction methods, ultrasound-assisted extraction with bath and probe, stirring, and Soxhlet, were tested, while the hydrogel was produced by a one-step freeze-thaw method. Besides the extraction yield, the antioxidant capacity of the extracts was accessed, which allowed to select the extract obtained by ultrasound-assisted extraction to be incorporated into the hydrogels.

View Article and Find Full Text PDF

In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!