In the presence of double-stranded DNA breaks (DSBs), the activation of ATR is achieved by the ability of ATM to phosphorylate TopBP1 on serine 1131, which leads to an enhancement of the interaction between ATR and TopBP1. In Xenopus egg extracts, the Mre11-Rad50-Nbs1 (MRN) complex is additionally required to bridge ATM and TopBP1 together. In this report, we show that CtIP, which is recruited to DSB-containing chromatin, interacts with both TopBP1 and Nbs1 in a damage-dependent manner. An N-terminal region containing the first two BRCT repeats of TopBP1 is essential for the interaction with CtIP. Furthermore, two distinct regions in the N-terminus of CtIP participate in establishing the association between CtIP and TopBP1. The first region includes two adjacent putative ATM/ATR phosphorylation sites on serines 273 and 275. Secondly, binding is diminished when an MRN-binding region spanning residues 25-48 is deleted, indicative of a role for the MRN complex in mediating this interaction. This was further evidenced by a decrease in the interaction between CtIP and TopBP1 in Nbs1-depleted extracts and a reciprocal decrease in the binding of Nbs1 to TopBP1 in the absence of CtIP, suggestive of the formation of a complex containing CtIP, TopBP1, and the MRN complex. When CtIP is immunodepleted from egg extracts, the activation of the response to DSBs is compromised and the levels of ATR, TopBP1, and Nbs1 on damaged chromatin are reduced. Thus, CtIP interacts with TopBP1 in a damage-stimulated, MRN-dependent manner during the activation of ATR in response to DSBs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115019PMC
http://dx.doi.org/10.4161/cc.10.3.14711DOI Listing

Publication Analysis

Top Keywords

topbp1
12
interacts topbp1
12
topbp1 nbs1
12
egg extracts
12
mrn complex
12
ctip topbp1
12
ctip
10
ctip interacts
8
double-stranded dna
8
dna breaks
8

Similar Publications

DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown.

View Article and Find Full Text PDF

Functional Analysis and Experimental Validation of the Prognostic and Immune Effects of the Oncogenic Protein CDC45 in Breast Cancer.

Breast Cancer (Dove Med Press)

January 2025

The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.

Purpose: Cell division cycle protein 45 (CDC45) plays a crucial role in DNA replication. This study investigates its role in breast cancer (BC) and its impact on tumor progression.

Methods: We utilized the GEO database to screen differentially expressed genes (DEGs) and conducted enrichment analysis on these genes.

View Article and Find Full Text PDF

Interaction of DDB1 with NBS1 in a DNA Damage Checkpoint Pathway.

Int J Mol Sci

December 2024

Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea.

Various DNA damage checkpoint control mechanisms in eukaryotic cells help maintain genomic integrity. Among these, NBS1, a key component of the MRE11-RAD50-NBS1 (MRN) complex, is an essential protein involved in the DNA damage response (DDR). In this study, we discovered that DNA damage-binding protein 1 (DDB1) interacts with NBS1.

View Article and Find Full Text PDF

Minute virus of mice NS1 redirects casein kinase 2 specificity to suppress the ATR DNA damage response pathway during infection.

J Virol

December 2024

Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Bond Life Sciences Center, Columbia, Missouri, USA.

Unlabelled: During infection the autonomous parvovirus minute virus of mice (MVM) generates extensive DNA damage which facilitates virus replication and induces a cellular DNA damage response (DDR) driven by the ataxia telangiectasia mutated (ATM) kinase. Atypically, the ataxia telangiectasia and Rad-3-related (ATR) DDR pathway remains inactive. Upon DNA damage ATR is normally recruited to single-stranded DNA sequences formed at genomic DNA damage sites, and while within a multiprotein complex activates, via phosphorylation, the key DDR regulator checkpoint kinase 1 (Chk1).

View Article and Find Full Text PDF

TICRR Overexpression Enhances Disease Aggressiveness and Immune Infiltration of Cutaneous Melanoma.

Pharmgenomics Pers Med

September 2024

Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China.

Article Synopsis
  • Scientists are studying a protein called TICRR to see if it can help predict how bad cutaneous melanoma (a type of skin cancer) might be and if it can be treated better.
  • They looked at tumor samples and found that when TICRR is too high, it usually means the cancer is worse for patients.
  • They also discovered that lowering TICRR helps slow down the cancer spread, while increasing it makes the cancer more aggressive by affecting certain cell pathways and immune responses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!