RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I-specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172167 | PMC |
http://dx.doi.org/10.1083/jcb.201006040 | DOI Listing |
Genes (Basel)
December 2024
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.
Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.
View Article and Find Full Text PDFPhytomedicine
December 2024
Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China. Electronic address:
Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
November 2024
CAS Key Laboratory of Pathogenic Microorganisms and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Nucleolar complex associated 4 homolog (NOC4L) is a key factor in ribosome biogenesis, and this study aims to investigate its roles in activated T cells from the perspective of translation regulation. Firstly, flow cytometry was employed to determine the expression levels of NOC4L in the CD4 T cells under different conditions in the transgenic reporter mice expressing . Subsequently, the expression of NOC4L along with cell proliferation was examined under Th1 and Th17 polarization conditions.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14). Oncogenic stress induces p14 to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14 in nucleoli, preventing its degradation and blocking p53 activation.
View Article and Find Full Text PDFTrends Cell Biol
November 2024
Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany. Electronic address:
Recent studies revealed how nucleolar stress enhances MDM4 exon skipping and activates p53 via the ribosomal protein L22 (RPL22; eL22). Tumor-associated L22 mutations lead to full-length MDM4 synthesis, overcoming tumor suppression by p53. This forum article explores how MDM4 splicing patterns integrate stress signaling to take p53-dependent cell fate decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!