Small Heterodimer Partner (SHP) inhibits numerous transcription factors that are involved in diverse biological processes, including lipid and glucose metabolism. In response to increased hepatic bile acids, SHP gene expression is induced and the SHP protein is stabilized. We now show that the activity of SHP is also increased by posttranslational methylation at Arg-57 by protein arginine methyltransferase 5 (PRMT5). Adenovirus-mediated hepatic depletion of PRMT5 decreased SHP methylation and reversed the suppression of metabolic genes by SHP. Mutation of Arg-57 decreased SHP interaction with its known cofactors, Brm, mSin3A, and histone deacetylase 1 (HDAC1), but not with G9a, and decreased their recruitment to SHP target genes in mice. Hepatic overexpression of SHP inhibited metabolic target genes, decreased bile acid and hepatic triglyceride levels, and increased glucose tolerance. In contrast, mutation of Arg-57 selectively reversed the inhibition of SHP target genes and metabolic outcomes. The importance of Arg-57 methylation for the repression activity of SHP provides a molecular basis for the observation that a natural mutation of Arg-57 in humans is associated with the metabolic syndrome. Targeting posttranslational modifications of SHP may be an effective therapeutic strategy by controlling selected groups of genes to treat SHP-related human diseases, such as metabolic syndrome, cancer, and infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135303PMC
http://dx.doi.org/10.1128/MCB.01212-10DOI Listing

Publication Analysis

Top Keywords

shp
12
mutation arg-57
12
target genes
12
small heterodimer
8
heterodimer partner
8
activity shp
8
decreased shp
8
shp target
8
metabolic syndrome
8
metabolic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!