Wavelet decomposition of ocular motor signals was investigated with a view to its use for noise analysis and filtering. Ocular motor noise may be physiological, depending on brain activities, or experimental, depending on the eye recording machine, head movements and blinks. Experimental noise, such as spikes, must be removed, preserving noise due to neuro-physiological activities. The proposed method uses wavelet multiscale decomposition to remove spikes and optimizes the procedure by means of the covariance of the eye signals. To measure the noise on eye motor control, we used the wavelet entropy. The method was tested on patients with cerebellar disorders and healthy subjects. A significant difference in wavelet entropy was observed, indicating this quantity as a valuable measure of physiological motor noise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2011.01.006 | DOI Listing |
Sensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronic and Nanoscale Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. Electronic address:
The brain is a highly complex and delicate system, and its internal neural processes are manifested as the interweaving and superposition of multi-frequency neural signals. However, traditional brain network studies are often limited to the whole frequency band or a specific frequency band, ignoring the potentially profound impact of the diversity of information within the frequency on the dynamics of brain networks. To comprehensively and deeply analyze this phenomenon, the present study is devoted to exploring the specific performance of brain networks at different frequencies.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Lebow College of Business, Drexel University, Philadelphia, USA. Electronic address:
This study investigates the impact of recent Artificial Intelligence (AI)-driven technological innovations on carbon prices across different quantiles, assessing the influence of AI stock prices on energy prices based on European carbon allowances while controlling for other macroeconomic factors. Using robust methods such as quantile-on-quantile regression, wavelet analysis, and transfer entropy, the research quantifies the information flow between the AI market and carbon allowances. Using daily data with four alternative AI stock prices from September 14, 2016, to December 29, 2023, the findings reveal a strong effect of AI returns on carbon prices, with significant fluctuations across price quantiles and consistent long-term average growth in market returns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!