Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B.

Mol Pain

Centro de Bioproductos Marinos, Agencia de Medio Ambiente, Ministerio de Ciencia, Tecnología y Medio Ambiente, Loma y 37, Alturas del Vedado, CP 10600 La Habana, Cuba.

Published: January 2011

Background: Acid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG) neurons obtained from Wistar rats.

Results: Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase), and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ < 400 ms) ASIC currents in DRG neurons obtained from Wistar rats, with a nonsignificant action on ASIC currents with a slow desensitizing time-course. The action of thalassiolin B shows no pH or voltage dependence nor is it modified by steady-state ASIC desensitization or voltage. The high concentration of thalassiolin B in the extract may account for the antinociceptive action of BM-21.

Conclusions: To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037906PMC
http://dx.doi.org/10.1186/1744-8069-7-10DOI Listing

Publication Analysis

Top Keywords

asic currents
12
thalassia testudinum
8
phenolic compound
8
bm-21 extract
8
chemical nociception
8
drg neurons
8
neurons wistar
8
bm-21 thalassiolin
8
extract
7
thalassiolin
7

Similar Publications

Integrating time-of-flight (ToF) measurements in radiography and computed tomography (CT) enables an approach for scatter rejection in imaging systems that eliminates the need for anti-scatter grids, potentially increasing system sensitivity and image quality. However, present hardware dedicated to the time-correlated measurement of X-rays is limited to a small scale and low density. A switch to highly integrated electronics and detectors is needed to progress towards a medium-scale system capable of acquiring images, while offering a timing resolution below 300 ps FWHM to achieve scatter rejection comparable to current grids.

View Article and Find Full Text PDF

A Novel Real-Time Threshold Algorithm for Closed-Loop Epilepsy Detection and Stimulation System.

Sensors (Basel)

December 2024

The Department of Information Systems and Computer Science, Ateneo de Manila University, Quezon City 1108, Philippines.

Epilepsy, as a common brain disease, causes great pain and stress to patients around the world. At present, the main treatment methods are drug, surgical, and electrical stimulation therapies. Electrical stimulation has recently emerged as an alternative treatment for reducing symptomatic seizures.

View Article and Find Full Text PDF

This review provides an in-depth analysis of current hardware acceleration approaches for image processing and neural network inference, focusing on key operations involved in these applications and the hardware platforms used to deploy them. We examine various solutions, including traditional CPU-GPU systems, custom ASIC designs, and FPGA implementations, while also considering emerging low-power, resource-constrained devices.

View Article and Find Full Text PDF

Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3.

J Phys Chem B

December 2024

Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States.

Article Synopsis
  • * Research utilizing electrophysiology and molecular dynamics simulations indicates that PUFAs like docosahexaenoic acid (DHA) prevent a membrane phospholipid, POPC, from blocking the ion channel's pore, which enhances current flow.
  • * Single-channel recording confirms that DHA increases the current amplitude in ASIC3, supporting the idea that PUFAs relieve pore blockages and highlighting a new way these fatty acids influence ion channel function.
View Article and Find Full Text PDF

Industry-Level Electrocatalytic CO to CO Enabled by 2D Mesoporous Ni Single Atom Catalysts.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China.

Electrocatalytic CO reduction reaction (eCORR) has captivated widespread attentions, yet achieving the requisite efficiency, selectivity and stability for industrial applications poses a persistent challenge. Here, we report the synthesis of 2D mesoporous Ni single atom catalysts in N-doped carbon framework via a bottom-up interfacial assembly strategy. The 2D mesoporous Ni-N-C catalyst showcases an ultrathin thickness (~6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!