Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H(+) + 2e(-) ↔ H(2), yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864445 | PMC |
http://dx.doi.org/10.1111/j.1751-7915.2007.00009.x | DOI Listing |
Acta Biochim Pol
January 2025
Department of Biotechnology, Indonesia International Institute for Life Sciences, East Jakarta, Indonesia.
Erythritol is a beneficial sugar alcohol that can be used as a sugar substitute for diabetic patients. Erythritol is a bioproduct produced by microorganisms as a response to high osmotic pressure and stress in the growth medium. High concentrations of carbon source substrate can increase the osmotic pressure and provide more nutrient supply for yeast growth and metabolism.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of Chemical Engineering, University of Waterloo, Waterloo, Canada.
Biomanufacturing offers a potentially sustainable alternative to deriving chemicals from fossil fuels. However, traditional biomanufacturing, which uses sugars as feedstocks, competes with food production and yields unfavourable land use changes, so more sustainable options are necessary. Cupriavidus necator is a chemolithoautotrophic bacterium capable of consuming carbon dioxide and hydrogen as sole carbon and energy sources, or formate as the source of both.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
LuDong University, 186 Hongqi Road, Yantai, Shandong 264025, China. Electronic address:
Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: Microbial cholesterol oxidase (ChoX) has wide clinical and industrial applications; therefore, many efforts are being made to identify promising sources. This study aimed to isolate a novel ChoX-producing bacterial strain from whey samples.
Results: The most efficient strain was selected based on extracellular ChoX-producing ability and characterized as Escherichia fergusonii (E.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!