We used a two-step enrichment approach to isolate root-colonizing hexachlorocyclohexane (HCH)-degrading microorganisms. The first step consists of the use of classical liquid enrichment to isolate γ-HCH degraders. The γ-HCH-degrading microbes were attached in mass to corn seeds sown in soil with γ-HCH, and after plant development we rescued bacteria growing on root tips. Bacteria were then subjected to a second enrichment round in which growth on liquid medium with γ-HCH and inoculation of corn seeds were repeated. We then isolated bacteria on M9 minimal medium with γ-HCH from root tips. We were able to isolate four Sphingomonas strains, all of which degraded α-, β-, γ- and δ-HCH. Two of the strains were particularly good colonizers of corn roots, reaching high cell density in vegetated soil and partly removing γ-HCH. In contrast, these bacteria performed poorly in unplanted soils. This study supports the hypothesis that the removal of persistent toxic chemicals can be accelerated by combinations of plants and bacteria, a process generally known as rhizoremediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864435 | PMC |
http://dx.doi.org/10.1111/j.1751-7915.2007.00004.x | DOI Listing |
Microsc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFSci Rep
December 2024
International Maize and Wheat Improvement Center (CIMMYT), United Nations Avenue, Gigiri, PO Box 25171, Nairobi, Kenya.
Hybrid maize seed production in Africa is dependent upon manual detasseling of the female parental lines, often resulting in plant damage that can lead to reduced seed yields on those detasseled lines. Additionally, incomplete detasseling can result in hybrid purity issues that can lead to production fields being rejected. A unique nuclear genetic male sterility seed production technology, referred to as Ms44-SPT, was developed to avoid hybrid seed loss and to improve the purity and quality of hybrid maize production.
View Article and Find Full Text PDFNat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
BMC Plant Biol
December 2024
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!