Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting.

Microb Biotechnol

Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland.

Published: January 2008

Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864433PMC
http://dx.doi.org/10.1111/j.1751-7915.2007.00008.xDOI Listing

Publication Analysis

Top Keywords

mutant hbpr
8
green fluorescent
8
hbpr protein
8
xylr family
8
effector recognition
8
2-cbp recognition
8
recognition
5
2-cbp
5
mutant
4
hbpr transcription
4

Similar Publications

Article Synopsis
  • Bacterial transcription activators from the XylR/DmpR subfamily control gene expression through σ(54)-dependent RNA polymerase when stimulated by aromatic compounds.
  • The study focuses on the HbpR protein in Pseudomonas azelaica, which specifically responds to the compound 2-hydroxybiphenyl.
  • Researchers predicted the protein's effector recognition domain using structural modeling and created various HbpR mutants to identify critical residues involved in the interaction with the effector, revealing that some essential residues are conserved among related proteins.
View Article and Find Full Text PDF

Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure.

View Article and Find Full Text PDF

In the presence of 2-hydroxybiphenyl, the enhancer binding protein, HbpR, activates the sigma54-dependent P(hbpC) promoter and controls the initial steps of 2-hydroxybiphenyl degradation in Pseudomonas azelaica. In the activation process, an oligomeric HbpR complex of unknown subunit composition binds to an operator region containing two imperfect palindromic sequences. Here, the HbpR-DNA binding interactions were investigated by site-directed mutagenesis of the operator region and by DNA-binding assays using purified HbpR.

View Article and Find Full Text PDF

The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida.

View Article and Find Full Text PDF

Pseudomonas azelaica HBP1 degrades the toxic substance 2-hydroxybiphenyl (2-HBP) by means of three enzymes that are encoded by structural genes hbpC, hbpA, and hbpD. These three genes form a small noncontiguous cluster. Their expression is activated by the product of regulatory gene hbpR, which is located directly upstream of the hbpCAD genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!