Lignocellulose biodegradation, an essential step in terrestrial carbon cycling, generally involves removal of the recalcitrant lignin barrier that otherwise prevents infiltration by microbial polysaccharide hydrolases. However, fungi that cause brown rot of wood, a major route for biomass recycling in coniferous forests, utilize wood polysaccharides efficiently while removing little of the lignin. The mechanism by which these basidiomycetes breach the lignin remains unclear. We used recently developed methods for solubilization and multidimensional (1) H-(13) C solution-state NMR spectroscopy of ball-milled lignocellulose to analyse aspen wood degraded by Postia placenta. The results showed that decay decreased the content of the principal arylglycerol-β-aryl ether interunit linkage in the lignin by more than half, while increasing the frequency of several truncated lignin structures roughly fourfold over the level found in sound aspen. These new end-groups, consisting of benzaldehydes, benzoic acids and phenylglycerols, accounted for 6-7% of all original lignin subunits. Our results provide evidence that brown rot by P. placenta results in significant ligninolysis, which might enable infiltration of the wood by polysaccharide hydrolases even though the partially degraded lignin remains in situ. Recent work has revealed that the P. placenta genome encodes no ligninolytic peroxidases, but has also shown that this fungus produces an extracellular Fenton system. It is accordingly likely that P. placenta employs electrophilic reactive oxygen species such as hydroxyl radicals to disrupt lignin in wood.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2010.02417.xDOI Listing

Publication Analysis

Top Keywords

brown rot
12
lignin
9
truncated lignin
8
lignin structures
8
postia placenta
8
polysaccharide hydrolases
8
lignin remains
8
wood
6
placenta
5
multidimensional nmr
4

Similar Publications

Hawthorn () is an important economic fruit and Chinese medicinal plant, which is widely distributed in the northern China. In early July 2024, a fruit rot disease was observed on the young fruits of hawthorn in a park of Shouguang, Shandong Province, China (36°53'42.16″N, 118°47'22.

View Article and Find Full Text PDF

Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).

View Article and Find Full Text PDF

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.

View Article and Find Full Text PDF

Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!