A stable isotope probing (SIP) approach was used to study aerobic methane-oxidizing bacteria (methanotrophs) in lake sediment. Oligotrophic Lake Stechlin was chosen because it has a permanently oxic sediment surface. 16S rRNA and the pmoA gene, which encodes a subunit of the methane monooxygenase enzyme, were analysed following the incubation of sediment with (13) CH(4) and the separation of (13) C-labelled DNA and RNA from unlabelled nucleic acids. The incubation with (13) CH(4) was performed over a 4-day time-course and the pmoA genes and transcripts became progressively labelled such that approximately 70% of the pmoA genes and 80% of the transcripts were labelled at 96 h. The labelling of pmoA mRNA was quicker than pmoA genes, demonstrating that mRNA-SIP is more sensitive than DNA-SIP; however, the general rate of pmoA transcript labelling was comparable to that of the pmoA genes, indicating that the incorporation of (13) C into ribonucleic acids of methanotrophs was a gradual process. Labelling of Betaproteobacteria was clearly seen in analyses of 16S rRNA by DNA-SIP and not by RNA-SIP, suggesting that cross-feeding of the (13) C was primarily detected by DNA-SIP. In general, we show that the combination of SIP approaches provided valuable information about the activity and growth of the methanotrophic populations and the cross-feeding of methanotroph metabolites by other microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2010.02415.xDOI Listing

Publication Analysis

Top Keywords

pmoa genes
16
stable isotope
8
isotope probing
8
methanotrophs lake
8
lake sediment
8
16s rrna
8
dna-sip general
8
pmoa
7
dna- rrna-
4
rrna- mrna-based
4

Similar Publications

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Simultaneous removal of methane and high nitrite from the wastewater by Methylomonas sp. with soluble methane monooxygenase.

Bioresour Technol

December 2024

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China. Electronic address:

Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp.

View Article and Find Full Text PDF

Soil functional genes in grasslands are crucial for processes like nitrogen fixation, nitrification, denitrification, methane production, and oxidation, integral to nitrogen and methane cycles. However, the impact of global changes on these genes is not well understood. We reviewed 84 studies to examine the effects of nitrogen addition (N), warming (W), increased precipitation (PPT +), decreased precipitation (PPT-), and elevated CO (eCO) on these functional genes.

View Article and Find Full Text PDF

Methanogens dominate methanotrophs and act as a methane source in aquaculture pond sediments.

Ecotoxicol Environ Saf

December 2024

Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China. Electronic address:

Aquaculture pond sediments act as hotspots for methane (CH) emissions; however, knowledge gaps on the regulation of microorganisms hinder our further understanding of methane dynamics in aquaculture pond sediment. Using field sampling and molecular analysis, we examined CH fluxes, the methanogenic community composition, and their interaction with methanotrophs to comprehensively understand the methane cycling in sediments of aquaculture ponds in northern China. Compared with a fishing pond without feed inputs, the abundances of methanogens mcrA and methanotrophs pmoA genes increased significantly in aquaculture ponds sediments.

View Article and Find Full Text PDF

Background: Arsenic (As) metabolism pathways and their coupling to nitrogen (N) and carbon (C) cycling contribute to elemental biogeochemical cycling. However, how whole-microbial communities respond to As stress and which taxa are the predominant As-transforming bacteria or archaea in situ remains unclear. Hence, by constructing and applying ROCker profiles to precisely detect and quantify As oxidation (aioA, arxA) and reduction (arrA, arsC1, arsC2) genes in short-read metagenomic and metatranscriptomic datasets, we investigated the dominant microbial communities involved in arsenite (As(III)) oxidation and arsenate (As(V)) reduction and revealed their potential pathways for coupling As with N and C in situ in rice paddies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!