Scattering of hyperthermal argon atoms from clean and D-covered Ru(0001) surfaces.

J Chem Phys

FOM Institute for Plasma Physics Rijnhuizen, Euratom FOM Association, P.O. Box 1207, 3430 BE, Nieuwegein, The Netherlands.

Published: January 2011

Hyperthermal Ar atoms were scattered from a Ru(0001) surface held at temperatures of 180, 400 and 600 K, and from a Ru(0001)-(1×1)D surface held at 114 and 180 K. The resultant angular intensity and energy distributions are complex. The in-plane angular distributions have narrow (FWHM ≤ 10°) near-specular peaks and additional off-specular features. The energy distributions show an oscillatory behavior as a function of outgoing angle. In comparison, scattered Ar atoms from a Ag(111) surface exhibit a broad angular intensity distribution and an energy distribution that qualitatively tracks the binary collision model. The features observed for Ru, which are most evident when scattering from the clean surface at 180 K and from the Ru(0001)-(1×1)D surface, are consistent with rainbow scattering. The measured TOF profiles cannot be adequately described with a single shifted Maxwell-Boltzmann distribution. They can be fitted by two components that exhibit complex variations as a function of outgoing angle. This suggests at least two significantly different site and∕or trajectory dependent energy loss processes at the surface. The results are interpreted in terms of the stiffness of the surface and highlight the anomalous nature of the apparently simple hcp(0001) ruthenium surface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3518042DOI Listing

Publication Analysis

Top Keywords

surface
8
surface held
8
ru0001-1×1d surface
8
angular intensity
8
energy distributions
8
function outgoing
8
outgoing angle
8
scattering hyperthermal
4
hyperthermal argon
4
argon atoms
4

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Background: Tumor size (TS) in pancreatic ductal adenocarcinoma (PDAC) is one of the most important prognostic factors. However, discrepancies between TS on preoperative images (TSi) and pathological specimens (TSp) have been reported. This study aims to evaluate the factors associated with the differences between TSi and TSp.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!