Gaining an understanding the dynamic behaviors of dopant atoms in silicon nanowires (SiNWs) is the key to achieving low-power and high-speed transistor devices using SiNWs. The segregation behavior of boron (B) and phosphorus (P) atoms in B- and P-doped SiNWs during thermal oxidation was closely observed using B local vibrational peaks and Fano broadening in optical phonon peaks of B-doped SiNWs by micro-Raman scattering. Electron spin resonance (ESR) signals from conduction electrons were used for P-doped SiNWs. Our results showed that B atoms preferentially segregate in the surface oxide layer, whereas P atoms tend to accumulate in the Si region around the interface of SiNWs. The radial distribution of P atoms in SiNWs was also investigated to prove the difference segregation behaviors between of P and B atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl103773eDOI Listing

Publication Analysis

Top Keywords

segregation behaviors
8
radial distribution
8
dopant atoms
8
atoms silicon
8
silicon nanowires
8
p-doped sinws
8
atoms
7
sinws
7
behaviors radial
4
distribution dopant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!