Conditions for the processing and mixing of biodegradable polymers at temperatures less than their thermal destruction (130-150 degrees C) using standard equipment have been identified. The structure of the polyhydroxybutyrate/valerate (PHB/V) copolymer has been revealed and peculiarities of the crystal phase formation at different monomer ratios have been investigated. It was shown that pure PHB with molecular mass 180-270 kDa has elastic module approximately 1.2 GPa, strength approximately 25 MPa, and elongation at break approximately 10%. The most active biodestructors of PHB, PHB/V, and their composites have been selected (Aspergillus caespitosus), and the ability of basidiomycete Panus tigrinus to biodegrade polyalkanoates was demonstrated for the first time. It was shown that A. caespitosus degraded PHB/V and Biopol films along with the PHB with the destruction rate depending on the technology of the film production, on the molecular mass, and on the extend of the polymer crystallinity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecular mass
8
[composite biodegradable
4
biodegradable materials
4
materials based
4
based polyhydroxyalkanoate]
4
polyhydroxyalkanoate] conditions
4
conditions processing
4
processing mixing
4
mixing biodegradable
4
biodegradable polymers
4

Similar Publications

Background: Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents in Alzheimer's disease (AD). In the last few years, Aprile and co-workers designed and purified a single-domain antibody (sdAb), called DesAb-O, with high specificity for Aβ oligomeric conformers. Recently, Cascella and co-workers showed that DesAb-O can selectively detect synthetic Aβ oligomers both in vitro and in cultured cells, neutralizing their associated neuronal dysfunction.

View Article and Find Full Text PDF

Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ProMIS Neurosciences, Toronto, ON, Canada.

Background: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Eisai Inc., Nutley, NJ, USA.

Alzheimer's disease pathophysiology is believed to involve various abnormalities, including those of amyloid beta (Ab) peptide and tau processing, inflammation, oxidative stress, and vascular risk factors. Aβ peptides exist in a dynamic continuum of conformational states from monomeric Aβ, to soluble progressively larger Aβ assemblies that include a range of low molecular weight oligomers to higher molecular weight protofibrils, and finally to insoluble fibrils (plaques). Various lines of evidence support the "amyloid hypothesis" that Aβ plays a central role in the pathogenesis of AD, and several immunotherapies have been developed to interact with this cascade in various different places which may reduce the number of soluble aggregates and insoluble Aβ fibrils deposited in the brain.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

UIPS, CHANDIGARH, Punjab, India.

Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.

Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!