AI Article Synopsis

  • Methylmercury is recognized as a developmental neurotoxicant, with early evidence stemming from cases in Sweden and Japan highlighting the unique vulnerability of developing nervous systems.
  • Exposure limits have historically focused on adult toxicity, delaying acknowledgment of its effects on infants for decades.
  • Current studies face challenges due to imprecise exposure assessments and confounding factors from fish nutrients, which complicate the understanding of the true risks associated with low-level methylmercury exposure.

Article Abstract

Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan, a few years later. Whereas the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096460PMC
http://dx.doi.org/10.1002/msj.20228DOI Listing

Publication Analysis

Top Keywords

developmental neurotoxicity
16
methylmercury
6
developmental
5
neurotoxicity
5
methylmercury brain
4
brain development
4
development imprecision
4
imprecision underestimation
4
underestimation developmental
4
neurotoxicity humans
4

Similar Publications

Polybrominated diphenyl ethers (PBDEs) are flame retardants heavily utilized across plastic, textile and electronic industries. Although these PBDEs are effective in protecting property and human life from fire, their high production volumes have led PBDEs to become pervasive environmental contaminants and pose an ecological and health risk as high levels have been noted in environmental media including water and sediment, wildlife and human tissue. Here we investigate the developmental neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the more dominant PBDE congeners found in human tissue, on oligodendrocytes in the hindbrain and spinal cord.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrethroid pesticides, particularly deltamethrin (DM), may contribute to neurodevelopmental disorders like ADHD and autism, but the exact mechanisms are still not fully understood.
  • The study utilized a rodent model to analyze brain-derived extracellular vesicles (BDEVs) from mice exposed to DM and identified 89 differentially expressed proteins linked to mitochondrial function and synaptic plasticity.
  • Ultimately, the research found that BDEVs from DM-exposed mice impaired long-term potentiation (LTP) in hippocampal synapses, suggesting that changes in BDEV signaling play a critical role in the neurotoxic effects of DM.
View Article and Find Full Text PDF

Integration of network toxicology and transcriptomics reveals the novel neurotoxic mechanisms of 2, 2', 4, 4'-tetrabromodiphenyl ether.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:

The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway.

View Article and Find Full Text PDF

Background: Severe or recurring major depression is associated with increased adverse childhood experiences (ACEs), heightened atherogenicity, and immune-linked neurotoxicity (INT). Nevertheless, the interconnections among these variables in outpatient major depression (OMDD) have yet to be determined. We aim to determine the correlations among INT, atherogenicity, and ACEs in OMDD patients compared to normal controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!