Movement of free cholesterol between the cellular compartment and acceptor is governed by cholesterol gradients that are determined by several enzymes and reverse cholesterol transport proteins. We have previously demonstrated that adenosine A(2A) receptors inhibit foam cell formation and stimulate production of cholesterol 27-hydroxylase (CYP27A1), an enzyme involved in the conversion of cholesterol to oxysterols. We therefore asked whether the effect of adenosine A(2A) receptors on foam cell formation in vitro is mediated by CYP27A1 or apoE, a carrier for cholesterol in the serum. We found that specific lentiviral siRNA infection markedly reduced apoE or 27-hydroxylase mRNA in THP-1 cells. Despite diminished apoE expression (p < 0.0002, interferon-gamma (IFNγ) CGS vs. IFNγ alone, n=4), CGS-21680, an adenosine A(2A) receptor agonist, inhibits foam cell formation. In contrast, CGS-21680 had no effect on reducing foam cell formation in CYP27A1 KD cells (4 ± 2%; p<0.5113, inhibition vs. IFNγ alone, n=4). Previously, we reported the A(2A) agonist CGS-21680 increases apoAI-mediated cholesterol efflux nearly twofold in wild-type macrophages. Adenosine receptor activation had no effect on cholesterol efflux in CYP27A1 KD cells but reduced efflux in apoE KD cells. These results demonstrate that adenosine A(2A) receptor occupancy diminishes foam cell formation by increasing expression and function of CYP27A1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288609PMC
http://dx.doi.org/10.1007/s10753-010-9288-yDOI Listing

Publication Analysis

Top Keywords

foam cell
16
cell formation
16
adenosine a2a
12
cholesterol
8
cholesterol 27-hydroxylase
8
reverse cholesterol
8
cholesterol transport
8
a2a receptors
8
27-hydroxylase apolipoprotein
4
apoe
4

Similar Publications

Conventional PP with a linear chain structure is not suitable for foam processing due to its poor rheological properties. In this study, PP was modified with PE through reactive melt blending of maleic anhydride-grafted PP (MA-PP) with a small amount of PE bearing glycidyl groups on its backbone (G-PE), with the aim of enhancing the melt rheological properties of PP to make it suitable for foam processing. An anhydride-epoxy reaction occurred between MA-PP and G-PE during the melt processing, resulting in the formation of a crosslinked polymer network, which was confirmed by FTIR spectroscopy, a solubility test, and the presence of a rubbery plateau above the melting point.

View Article and Find Full Text PDF

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

Boosting the Performance of Alkaline Anion Exchange Membrane Water Electrolyzer with Vanadium-Doped NiFeO.

Small

January 2025

Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.

Developing efficient, economical, and stable catalysts for the oxygen evolution reaction is pivotal for producing large-scale green hydrogen in the future. Herein, a vanadium-doped nickel-iron oxide supported on nickel foam (V-NiFeO/NF) is introduced, and synthesized via a facile hydrothermal method as a highly efficient electrocatalyst for water electrolysis. X-ray photoelectron and absorption spectroscopies reveal a synergistic interaction between the vanadium dopant and nickel/iron in the host material, which tunes the electronic structure of NiFeO to increase the number of electrochemically active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!