A proliferation of new computational methods and software tools for synthetic biology design has emerged in recent years but the field has not yet reached the stage where the design and construction of novel synthetic biology systems has become routine. To a large degree this is due to the inherent complexity of biological systems. However, advances in biotechnology and our scientific understanding have already enabled a number of significant achievements in this area. A key concept in engineering is the ability to assemble simpler standardised modules into systems of increasing complexity but it has yet to be adequately addressed how this approach can be applied to biological systems. In particular, the use of computer aided design tools is common in other engineering disciplines and it should eventually become centrally important to the field of synthetic biology if the challenge of dealing with the stochasticity and complexity of biological systems can be overcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0ib00077a | DOI Listing |
J Mol Graph Model
January 2025
Tianjin Institute of Industrial Biotechnology of Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. Electronic address:
S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology.
View Article and Find Full Text PDFNature
January 2025
Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
Ovarian cancer presents a significant treatment challenge due to its insidious nature and high malignancy. As autophagy is a vital cellular process for maintaining homeostasis, targeting the autophagic pathway has emerged as an avenue for cancer therapy. In the present study, we identify apolipoprotein B100 (ApoB100), a key modulator of lipid metabolism, as a potential prognostic biomarker of ovarian cancer.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.
Plastics, as synthetic polymers, are emerging contaminants that can harm organisms and ecosystems. This study investigates the presence of microplastics in sediments of two rivers in western Cuba, assessing their temporal variability, diversity, and characterizing the types of microplastics in these ecosystems. Additionally, the study examines the relationship between microplastic concentrations, the extracellular enzymatic activity of benthic microbial communities, and nutrient levels in sediments.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX 76798, United States. Electronic address:
To gain further insights into the importance of the unsaturated 1,4-ketoaldehyde moiety of ophiobolin A (OpA) for the potency and selectivity observed toward cancer stem cells, several derivatives were synthesized through controlled reduction and oxidations of the unsaturated aldehyde and ketone moieties. Structure elucidation of these new OpA derivatives was achieved through detailed NMR studies and comparison to OpA and known isolated congeners possessing variations in these regions. The relative stereochemistry of the newly generated stereocenters was determined by coupling constants in conjunction with conformational analyses (DFT) of the synthetic derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!