As silicon photovoltaics evolve towards thin-wafer technologies, efficient optical absorption for the near-infrared wavelengths has become particularly challenging. In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near-infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on micro-grooved silicon substrates using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared by functioning as impedance matching layers with effective refractive indices gradually varying from 1 to 1.3. Materials with such unique refractive index characteristics are not readily available in nature. As a result, the solar cell with combined textures achieves over 90% external quantum efficiencies for a broad wavelength range of 460-980 nm, which is crucial to the development of advanced thin-substrate silicon solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/9/095201DOI Listing

Publication Analysis

Top Keywords

surface textures
12
silicon photovoltaics
12
combined micro-
8
micro- nano-scale
8
nano-scale surface
8
light harvesting
8
silicon
5
textures
4
textures enhanced
4
near-infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!