X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361733PMC
http://dx.doi.org/10.1088/0031-9155/56/4/009DOI Listing

Publication Analysis

Top Keywords

prior image
20
scatter correction
16
correction algorithm
16
computed tomography
12
shading artifacts
12
scatter
8
cone-beam computed
8
image-guided radiation
8
radiation therapy
8
image
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!