Abs have been shown to be protective in passive immunotherapy of tuberculous infection using mouse experimental models. In this study, we report on the properties of a novel human IgA1, constructed using a single-chain variable fragment clone (2E9), selected from an Ab phage library. The purified Ab monomer revealed high binding affinities for the mycobacterial α-crystallin Ag and for the human FcαRI (CD89) IgA receptor. Intranasal inoculations with 2E9IgA1 and recombinant mouse IFN-γ significantly inhibited pulmonary H37Rv infection in mice transgenic for human CD89 but not in CD89-negative littermate controls, suggesting that binding to CD89 was necessary for the IgA-imparted passive protection. 2E9IgA1 added to human whole-blood or monocyte cultures inhibited luciferase-tagged H37Rv infection although not for all tested blood donors. Inhibition by 2E9IgA1 was synergistic with human rIFN-γ in cultures of purified human monocytes but not in whole-blood cultures. The demonstration of the mandatory role of FcαRI (CD89) for human IgA-mediated protection is important for understanding of the mechanisms involved and also for translation of this approach toward development of passive immunotherapy of tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115510PMC
http://dx.doi.org/10.4049/jimmunol.1003189DOI Listing

Publication Analysis

Top Keywords

novel human
8
passive immunotherapy
8
fcαri cd89
8
h37rv infection
8
human
7
human iga
4
iga monoclonal
4
monoclonal antibody
4
antibody protects
4
protects tuberculosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!