Structure-based search reveals hammerhead ribozymes in the human microbiome.

J Biol Chem

From the Departments of Pharmaceutical Sciences,; Chemistry, and; Molecular Biology and Biochemistry, University of California, Irvine, California 92697 and. Electronic address:

Published: March 2011

Deep sequencing of viral or bacterial nucleic acids monitors the presence and diversity of microbes in select populations and locations. Metagenomic study of mammalian viromes can help trace paths of viral transmissions within or between species. High throughput sequencing of patient and untreated sewage microbiomes showed many sequences with no similarity to genomic sequences of known function or origin. To estimate the distribution of functional RNAs in these microbiomes, we used the hammerhead ribozyme (HHR) motif to search for sequences capable of assuming its three-way junction fold. Although only two of the three possible natural HHR topologies had been known, our analysis revealed highly active ribozymes that terminated in any of the three stems. The most abundant of these are type II HHRs, one of which is the fastest natural cis-acting HHR yet discovered. Altogether, 13 ribozymes were confirmed in vitro, but only one showed sequence similarity to previously described HHRs. Sequences surrounding the ribozymes do not generally show similarity to known genes, except in one case, where a ribozyme is immediately preceded by a bacterial RadC gene. We demonstrate that a structure-based search for a known functional RNA is a powerful tool for analysis of metagenomic datasets, complementing sequence alignments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048661PMC
http://dx.doi.org/10.1074/jbc.C110.209288DOI Listing

Publication Analysis

Top Keywords

structure-based search
8
search reveals
4
reveals hammerhead
4
ribozymes
4
hammerhead ribozymes
4
ribozymes human
4
human microbiome
4
microbiome deep
4
deep sequencing
4
sequencing viral
4

Similar Publications

Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy.

View Article and Find Full Text PDF

The search for effective anti-cancer therapies has led to the exploration of dual inhibition strategies targeting multiple key molecular pathways. In this study, we aimed to design a novel candidate capable of dual inhibition targeting both EGFR (Epidermal Growth Factor Receptor) and PARP-1 (poly(ADP-ribose)polymerase-1), two crucial proteins implicated in cancer progression and resistance mechanisms. Through molecular hybridization and structure-based drug design approaches, we synthesized a series of compounds based on spirooxindole with triazole scaffolds with the potential for dual EGFR and PARP-1 inhibition.

View Article and Find Full Text PDF

Pangenome indexes are promising tools for many applications, including classification of nanopore sequencing reads. Move structure is a compressed-index data structure based on the Burrows-Wheeler Transform (BWT). It offers simultaneous O(1)-time queries and O(r) space, where r is the number of BWT runs (consecutive sequence of identical characters).

View Article and Find Full Text PDF

Deciphering bacterial protein functions with innovative computational methods.

Trends Microbiol

December 2024

Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel. Electronic address:

Bacteria colonize every niche on Earth and play key roles in many environmental and host-associated processes. The sequencing revolution revealed the remarkable bacterial genetic and proteomic diversity and the genomic content of cultured and uncultured bacteria. However, deciphering functions of novel proteins remains a high barrier, often preventing the deep understanding of microbial life and its interaction with the surrounding environment.

View Article and Find Full Text PDF

A patent review of xanthine oxidase inhibitors (2021-present).

Expert Opin Ther Pat

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.

Introduction: Xanthine oxidase (XO) catalyzes the oxidation of both hypoxanthine and xanthine in the last two steps of the purine metabolic pathway, serving as a rate-limiting enzyme for uric acid production as well as a key target for the treatment of gout and other hyperuricemia-related conditions.

Areas Covered: This paper reviews XO inhibitors in patents from 2021 to the present. We summarize in detail the structural classes and characteristics, in vitro and in vivo biological results, and structure‒activity relationships of synthetic inhibitors, as well as the sources, specific structures, research methods, and biological activities of XO inhibitors from natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!