Background: The HLA class II molecules play a central role in the generation of human immunodeficiency virus (HIV)-specific CD4(+) T-helper cells, which are critical for the induction of cytotoxic CD8(+) T cell responses. However, little is known about the impact of HLA class II alleles on HIV disease progression.

Methods: In this study we investigated the effect of HLA class II alleles on HIV disease outcome and HIV-specific T cell responses in a cohort of 426 antiretroviral therapy-naive, HIV-1 clade C-infected, predominantly female black South Africans.

Results: The HLA class II allele DRB1*1303 was independently associated with lower plasma viral loads in this population (P = .02), an association that was confirmed in a second cohort of 1436 untreated, HIV-1 clade B-infected, male European Americans, suggesting that DRB1*1303-mediated protection is independent of ethnicity, sex, and viral clade. Interestingly, DRB1*1303 carriage was not associated with an increased frequency of interferon (IFN) γ-positive HIV-specific CD4(+) T cell responses.

Conclusions: These data demonstrate the independent effect of an HLA class II allele, DRB1*1303, on HIV disease progression, in the absence of increased IFN-γ-positive HIV-specific CD4(+) T cell frequencies, suggesting that the protective activity of DRB1*1303 may be mediated via an alternative mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071131PMC
http://dx.doi.org/10.1093/infdis/jiq122DOI Listing

Publication Analysis

Top Keywords

hla class
24
hiv-1 clade
12
hiv-specific cd4+
12
hiv disease
12
viral loads
8
cell responses
8
class alleles
8
alleles hiv
8
class allele
8
allele drb1*1303
8

Similar Publications

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8 T cells.

View Article and Find Full Text PDF

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs).

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!