Understanding the laminated layer of larval Echinococcus I: structure.

Trends Parasitol

Cátedra de Inmunología, Departamento de Biociencias, Facultad de Química/Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.

Published: May 2011

Echinococcus larvae are protected by a massive carbohydrate-rich acellular structure, called the laminated layer. In spite of being widely considered the crucial element of these host-parasite interfaces, the laminated layer has been historically poorly understood. In fact, it is still often called 'chitinous', 'hyaline' or 'cuticular' layer, or said to be composed of polysaccharides. However, over the past few years the laminated layer was found to be comprised of mucins bearing defined galactose-rich carbohydrates, and accompanied, in the case of Echinococcus granulosus, by calcium inositol hexakisphosphate deposits. In this review, the architecture and biosynthesis of this unusual structure is discussed at depth in terms of what is known and what needs to be discovered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2010.12.012DOI Listing

Publication Analysis

Top Keywords

laminated layer
16
layer
5
understanding laminated
4
layer larval
4
larval echinococcus
4
echinococcus structure
4
structure echinococcus
4
echinococcus larvae
4
larvae protected
4
protected massive
4

Similar Publications

The purpose of the experiment was to indicate which element of the production process of flexible printed circuit boards is optimal in terms of the reliability of final products. According to the Taguchi method, in the experiment, five factors with two levels each were chosen for the subsequent analysis. These included the number of conductive layers, the thickness of the laminate layer, the type of the laminate, the diameter of the plated holes, and the current density in the galvanic bath.

View Article and Find Full Text PDF

Development of an Equivalent Analysis Model of PVB Laminated Glass for TRAM Crash Safety Analysis.

Polymers (Basel)

December 2024

Department of Mechanical Engineering, Hanyang University ERICA, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan-si 15588, Gyeonggi-do, Republic of Korea.

This study focuses on an equivalent model of Polyvinyl Butyral (PVB) laminated glass to simulate the Head Injury Criterion (HIC) when a pedestrian collides with a TRAM. To simulate the collision behavior that occurs when a pedestrian's head collides with PVB laminated glass, a comparison was made between the results of the widely used PLC model for PVB laminated glass modeling and an actual dynamic head impact test. The material properties of the tempered glass and PVB film used in the PLC and equivalent models were obtained via four-point bending tests and tensile tests, respectively.

View Article and Find Full Text PDF

Background/aim: Sports mouthguard should be designed and fabricated adequately. The purpose was to propose a criterion for fabricating sports laminate mouthguard with adequate thickness for protect orofacial structures.

Materials And Methods: Ethylene vinyl acetate sheet (Sports Mouthguard) was fabricated using a pressure former.

View Article and Find Full Text PDF

Investigation of Damping Properties of Natural Fiber-Reinforced Composites at Various Impact Energy Levels.

Polymers (Basel)

December 2024

Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.

Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.

View Article and Find Full Text PDF

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aviation thermal insulation layers due to their high strength-to-weight ratio and excellent high-temperature performance. However, challenges remain regarding their structural integrity and durability under extreme conditions. This study first employed finite element simulation to model the damage evolution of CFRP laminated plates under axial tensile loads and their thermal decomposition behavior in high-temperature environments, providing a theoretical reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!