Interleukin-10 was originally described as a factor that inhibits cytokine production by murine Th1 clones. Recent studies have since shown that IL-10 can also downregulate Th2 clones and their production of IL-4 and IL-5. Because of its immuno-suppressive properties, IL-10 has been suggested as a potential therapy for allergic inflammation and asthma. However, the pathophysiological role of IL-10 in vivo has not been clearly elucidated. We investigated the effects of IL-10 administration on the production of IgE, cytokine and allergen-induced Th2 cytokine production as well as its effects on eosinophilic inflammation. We established GATA-3/TCR double transgenic (GATA-3/TCR-Tg) mice by crossing GATA-3 transgenic mice with ovalbumin (OVA)-specific TCR transgenic mice; these mice were then sensitized using an intraperitoneal injection of OVA adsorbed to alum and challenged with the intratracheal instillation of an allergen. When GATA-3/TCR-Tg mice sensitized with OVA and alum were injected with C57-IL-10 cells before OVA inhalation, the levels of IL-5, IL-13, and IL-4 decreased by 40-85% and number of eosinophils decreased by 70% (P<0.03) in the murine bronchoalveolar lavage fluid (BALF). These results suggest that IL-10 plays an important role downstream of the inflammatory cascade in the Th2 response to antigens and in the development of BALF eosinophilia and cytokine production in a murine model of asthma. These immunosuppressive properties in animal models indicate that IL-10 could be a potential clinical therapy for the treatment of allergic inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2010.12.003DOI Listing

Publication Analysis

Top Keywords

cytokine production
12
gata-3/tcr-tg mice
8
transgenic mice
8
mice sensitized
8
il-10
5
production
5
mice
5
il-10 controls
4
controls th2-type
4
cytokine
4

Similar Publications

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication-competent HIV-1 subtype C reporter virus expressing mGreenLantern.

View Article and Find Full Text PDF

Monocytes are crucial players in innate immunity. The human cytomegalovirus (CMV) infection has significant impacts on monocyte effector functions and gene expression. CMV, a β-herpesvirus, disrupts key monocyte roles, including phagocytosis, antigen presentation, cytokine production, and migration, impairing their ability to combat pathogens and activate adaptive immune responses.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (T) cells and tissue-resident memory B (B) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses.

View Article and Find Full Text PDF

Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy.

Vaccines (Basel)

November 2024

Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.

The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!