Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2010.12.026 | DOI Listing |
Environ Sci Technol
January 2025
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.
Methane (CH) is a greenhouse gas with a global warming potential 81.2 times higher than carbon dioxide (CO). The intentional emission of oxidants into the atmosphere has been proposed as a geoengineering solution to accelerate the oxidation of CH to CO, thereby reducing surface warming.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Semi-Arid Climate Change, College of Atmospheric Sciences, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
The impact of O on the respiratory system is a significant global problem. Nevertheless, there is insufficient information about its impact on respiratory disorders in northeast China. In this study, we used a generalized additive model (GAM) to determine the correlation between O concentrations and respiratory deaths based on the daily meteorological data, pollutant concentrations, and respiratory deaths from 2014 to 2016 in Shenyang, a typical city in northeast China.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China.
Anemia in women of reproductive age (WRA) presents a pressing global public health issue, particularly in low- and middle-income countries (LMICs). Yet, the potential impact of ozone (O) exposure on anemia remains uncertain. The study included 1,467,887 eligible women from 83 surveys of 45 LMICs between 2004 to 2020.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Management, Shenzhen University, Shenzhen 518073, China; Center for Marine Development,Macau University of Science and Technology, Macao, 999078, China; Shenzhen International Maritime Institute, Shenzhen 518081, China. Electronic address:
Ships generate large amounts of air pollutants, including nitrogen dioxide (NO) that profoundly impacts air quality and poses serious threats to human health. It is crucial to understand the dynamics and drivers of ship-induced NO concentrations in China to support the prevention and control of fine particulate matter (PM) and ozone (O) pollution. This study built Generalized Additive Models (GAMs) to reveal the nonlinear effects of meteorological factors and ship emissions on ship-induced NO concentrations based on the Tropospheric Monitoring Instrument (TROPOMI) satellite data, AIS based emission model and meteorological data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!