Histological and Immunohistochemical studies were carried out to document the possible impact of heavy metal contamination in different tissues of Chanos chanos. Heavy metals such as Cu, Pb, Zn, Cd, Mn and Fe were predominant in water, sediment and biota of Kaattuppalli Island and varied significantly between two different sites. Histological changes such as swelling of muscle fiber and break down of muscle bundles were noted in the muscle. Similarly gill filament cell proliferation, increase in intercellular spaces and primary and secondary lamellar epithelium were evident in gills. The hepatocytes showed damage of central vein and rupture of irregular hepatic plate with more number of vacuoles in the fish collected from polluted site compared to that from the less polluted site. The impact of pollution was also assessed in different tissues by immunohistochemistry using primary antibody (mouse monoclonal HSP70 antibody 1:2000) and secondary antibody (HRP conjugated antibody) for expression of stress protein. Immunostaining analysis showed expression of HSP70 with high intensity in the tissues of fish collected from polluted site compared to less polluted sites. Further, HSP70 positive cells were analyzed from six locations per fish tissue section. One-way analysis of variance (ANOVA) followed by least significant difference (LSD) was used to check if the expression was significant. Results indicate that the values are statistically significant at the two different sampling sites (P<0.05).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2010.12.086DOI Listing

Publication Analysis

Top Keywords

polluted site
12
chanos chanos
8
kaattuppalli island
8
fish collected
8
collected polluted
8
site compared
8
compared polluted
8
impact metals
4
metals histopathology
4
expression
4

Similar Publications

Malachite green (MG) is used as a dye for materials such as wood, cotton, and nylon, and is used in aquaculture to prevent fungal and protozoan diseases. However, it is highly toxic, with carcinogenic, mutagenic, and teratogenic properties, resulting in bans worldwide. Despite this, MG is still frequently used in many countries due to its efficacy and economy.

View Article and Find Full Text PDF

Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites.

J Hazard Mater

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China. Electronic address:

Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions.

View Article and Find Full Text PDF

In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates.

View Article and Find Full Text PDF

The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.

View Article and Find Full Text PDF

Freshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!