Foot mechanics during the first six years of independent walking.

J Biomech

CTC, Comité Professionnel de Développement Cuir Chaussure Maroquinerie, 4 rue Hermann Frenkel, 69 367 Lyon Cedex 7, France.

Published: April 2011

Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2011.01.007DOI Listing

Publication Analysis

Top Keywords

ankle joint
16
mature age
12
joint
10
foot mechanics
8
mechanics ankle
8
angle αmω
8
joint parameters
8
years
6
foot
5
gait
5

Similar Publications

Exploratory analysis of gait mechanics in farmers.

J Occup Environ Hyg

January 2025

Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, Kentucky.

Farmers may be at a higher risk of developing hip osteoarthritis (OA) due to the high demands of their occupation. To the authors' knowledge, the gait patterns of farmers that may be associated with hip joint degeneration have yet to be analyzed. Therefore, this study compares gait mechanics between farmers and non-farmers (controls).

View Article and Find Full Text PDF

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

Introduction: The anterior talofibular ligament (ATFL) is the most vulnerable ligament in ankle sprains. Most patients recover after this injury with conservative treatment, while 20%-40% progress to chronic ankle instability that requires surgical stabilization. Conventional MRI does not provide a comprehensive image of the ATFL.

View Article and Find Full Text PDF

The tibiofibular mortise - anatomical controversies and their clinical importance: a historical and pictorial essay.

Int Orthop

January 2025

Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, Prague, Czech Republic.

Introduction: During 280 years of studies of the anatomy of the distal tibiofibular articulation, there have arisen many unclear issues regarding the description of individual structures and their terminology. These historical inaccuracies were subsequently reflected in the clinical practice.

Materials And Methods: A literature search of original publications and historical sources was performed.

View Article and Find Full Text PDF

Ankle arthritis is a severely disabling condition. Treatment poses many unique challenges to orthopaedic surgeons because ankle kinematics differs from that seen in the hip or knee joint and the loads transmitted through the ankle are greater during activity. Historically, motion-sacrificing procedures dominated management of ankle arthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!