Here we describe the neuronal organization of the arcuate body in the brain of the wandering spider Cupiennius salei. The internal anatomy of this major brain center is analyzed in detail based on allatostatin-, proctolin-, and crustacean cardioactive peptide (CCAP)-immunohistochemistry. Prominent neuronal features are demonstrated in graphic reconstructions. The stainings revealed that the neuroarchitecture of the arcuate body is characterized by several distinct layers some of which comprise nerve terminals that are organized in columnar, palisade-like arrays. The anatomy of the spider's arcuate body exhibits similarities as well as differences when compared to the central complex in the protocerebrum of the Tetraconata. Arguments for and against a possible homology of the arcuate body of the Chelicerata and the central complex of the Tetraconata and their consequences for the understanding of arthropod brain evolution are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.asd.2011.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!