A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. | LitMetric

Some evidence suggests that sleep deprivation might impair synaptic plasticity and produce oxidative stress in the hippocampus. However it is not clear whether impairment of long-term potentiation depends on the oxidative stress evoked by sleep deprivation protocol. In this study we aimed to investigate the effects of a 21-day sleep deprivation period on long-term plasticity taking into account the stressful effect of sleep deprivation. Sleep deprivation was carried out using the multiple platforms method on adult male Wistar rats. Long-term potentiation was studied in the medial perforant pathway-dentate gyrus synapses. Elevated T test was applied, and blood corticosterone levels were measured. Lipid peroxidation products in whole brain and hippocampus were determined. No significant difference was found between the sleep deprived, pedestal and cage control groups at the end of the 21-day period when corticosterone levels were compared. The results of the elevated T test indicated that sleep deprivation did not change the anxiety-like behavior of the animals. When compared with cage or pedestal control groups, sleep deprived rats displayed elevated malondialdehyde levels, and decreased superoxide dismutase and glutathione peroxidase activities together with impaired long-term potentiation maintenance. It can be argued that 21-day SD may impair the maintenance of long-term potentiation evoked in the dentate gyrus, and the balance between oxidant and antioxidant defenses of the hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2011.01.008DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
28
long-term potentiation
20
sleep
9
dentate gyrus
8
oxidative stress
8
elevated test
8
corticosterone levels
8
sleep deprived
8
control groups
8
deprivation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!