Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal).

Mar Pollut Bull

Grupo de Bioxeoquímica Mariña, Instituto de Investigacións Mariñas (CSIC), 36208 Vigo, Spain.

Published: March 2011

Platinum contamination in estuarine and coastal sediments has been evaluated in three cores collected from the Tagus Estuary and Prodelta shelf sediments. Elevated concentrations, up to 25-fold enrichment compared to background values, were found in the upper layers of the estuarine sediments. The degree of Pt enrichment in the estuarine sediments varied depending on the proximity to vehicular traffic sources, with a maximum concentration of 9.5 ng g(-1). A considerable decrease of Pt concentrations with depth indicated the absence of significant contamination before the introduction of catalytic converters in automobiles. Platinum distribution in the Tagus Prodelta shelf sediment core showed no surface enrichment; instead a sub-surface maximum at the base of the mixed layer suggested the possibility of post-depositional mobility, thereby blurring the traffic-borne contamination signature in coastal sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2010.12.018DOI Listing

Publication Analysis

Top Keywords

coastal sediments
12
estuarine coastal
8
tagus estuary
8
estuary prodelta
8
prodelta shelf
8
estuarine sediments
8
sediments
6
evaluation contamination
4
contamination platinum
4
estuarine
4

Similar Publications

Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.

View Article and Find Full Text PDF

The transport, distribution, and budget of anthropogenic I in the Bohai and North Yellow Seas, China.

J Hazard Mater

January 2025

State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:

The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.

View Article and Find Full Text PDF

Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.

View Article and Find Full Text PDF

Evaluation of heavy metal accumulation and sources in surface sediments of the Pearl River Estuary (China).

Mar Environ Res

January 2025

School of Ocean Engineering and Technology, Sun Yat-sen University, (Guangzhou)/Southern Laboratory of Ocean Science and Engineering (Zhuhai), China; Institute of Estuarine and Coastal Research, Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou, China.

The Pearl River Estuary (PRE) has experienced an influx of metals and nutrients, predominantly from the Pearl River, which has led to a potential threat to the estuarine ecosystem. In this study, sediment samples were densely collected to clarify the accumulation, and source contributions of heavy metals (namely Hg, Zn, Cu, As, Pb, Cd, and Cr) in the PRE. The spatial distributions of these metals exhibited significant differences, with higher values detected in the offshore areas and lower values further away.

View Article and Find Full Text PDF

Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments.

Environ Microbiol

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!