A novel chiral restricted access material was synthesized via a combination of atom transfer radical polymerization (ATRP) and click chemistry. Poly(2-methyl-3-butyn-2-ol methacrylate) (pMBMA) was grafted onto porous silica gel by a surface-initiated ATRP in order to synthesize an inner layer for β-cyclodextrin (β-CD) immobilization. The azide-modified β-CD was bound to pMBMA by click chemistry. The results demonstrate that click chemistry provides an effective route for the immobilization of β-CD for chiral discrimination. A second ATRP reaction was then used to graft external poly(glycidyl methacrylate) (pGMA) layer onto the silica gel. The external hydrophilic layer was subsequently created by hydrolysis of the epoxy groups of the pGMA. This bi-layer grafted material exhibited both enantioseparation and protein exclusion. It can be used for the efficient separation of chiral compounds in biological samples with direct injection into an HPLC system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2011.01.005 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China. Electronic address:
Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry, Iowa State University, Ames, IA, 50011, USA. Electronic address:
Background: Infections from the hepatitis B virus (HBV) are a major risk factor for hepatocellular carcinoma, one of the most common types of liver cancer. Circulating cell-free DNA (ccfDNA) in human plasma can be used as a non-invasive biomarker for diagnosing HBV-related liver diseases. The isolation of target ccfDNA sequences is often challenging due to the co-extraction of highly abundant non-target DNA from samples.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Electronic address:
Zein and its complexes have been considered as promising carriers for encapsulating and delivering various biological active ingredients, however, there still have some issues about Zein-based drug delivery systems should be considered, including poor colloidal stability, low drug encapsulation efficiency as well as rapid initial drug release, and uncontrollable release. In this work, we reported for the first time that hyperbranched polymers (HPG) functionalized Zein with terminal alkyne (Zein-HPG-PA) can be used for loading anticancer agent curcumin (CUR) via a facile phenol-yne click reaction. The resultant product (Zein-HPG-PA@CUR) displays high drug loading capacity, small particle size and excellent water dispersibility.
View Article and Find Full Text PDFChemSusChem
January 2025
Universita degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133, Milan, ITALY.
The first successful synthesis of 1,2,3-triazoles using CyreneTM as a biodegradable and non-toxic solvent in click chemistry has been developed. In contrast to previous methods, this sustainable approach allows product isolation by simple precipitation in water, eliminating the need for organic solvent extractions and column chromatography purifications, thus minimizing waste consumption while reducing operational costs. The protocol, performed also at gram scale, has broad applicability and versatility, as shown with complex substrates like biologically active coumarins or triazole-linked bifunctional molecules.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
Background: Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and target fishing of novel xanthone derivatives.
Methods: The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!