We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.1990.69.5.1883 | DOI Listing |
J Colloid Interface Sci
February 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
The design and construction of MOFs with flower-like structure could afford sufficient space for the immobilization of guests with large size and interconnected transport channels for their mass diffusion although it remains a challenge. Herein, wrinkled Ce-based hierarchically porous UiO-66 (Ce-WUiO-66) with good crystallinity was successfully synthesized for the first time using bicontinuous emulsion composed of 1-heptanol, water and F127 (PEOPPOPEO) surfactant as a template. F127 played a key role in the formation of emulsions as a stabilizer, and meanwhile its PEO segments interacted with MOF precursors to guide the evolvement of crystallized pore walls.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria.
Here, we present the first examination of the state of water under a soft confinement in eight aliphatic alcohols including cyclopentanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-decanol, 2-octanol and 3-octanol. Due to relatively large size of the aliphatic part, water has limited solubility in all studied alcohols. Water content in saturated solutions was determined by Karl Fischer titration and correlated with the spectroscopic data.
View Article and Find Full Text PDFFood Chem X
October 2024
Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
This study aimed to identify the key volatile compounds in two types of processed arabica coffee husk tea, elucidate their olfactory characteristics, and investigate their antioxidant and anti-inflammatory activities. Sensory evaluation indicated differences between the two groups. A total of 64 and 99 compounds were identified in the C and FC groups, respectively, with 5 identified as key aroma compounds (ROAV≥1).
View Article and Find Full Text PDFPlants (Basel)
February 2024
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
Odorant-binding proteins (OBPs) play important roles in the insect olfactory system since they bind external odor molecules to trigger insect olfactory responses. Previous studies have identified some plant-derived volatiles that attract the pervasive insect pest (Lepidoptera: Pyralidae), such as phenylacetaldehyde, benzyl acetate, 1-heptanol, and hexanal. To characterize the roles of CmedOBPs in the recognition of these four volatiles, we analyzed the binding abilities of selected CmedOBPs to each of the four compounds, as well as the expression patterns of in different developmental stages of adult.
View Article and Find Full Text PDFPest Manag Sci
February 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs, Key Laboratory of Molecular Biology of Crop Diseases and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
Background: Rice dwarf virus (RDV)-induced rice plant volatiles (E)-β-caryophyllene and 2-heptanol modulate the olfactory behavior of RDV insect vectors that promote viral acquisition and transmission. However, it remains elusive whether these two volatiles could influence the behaviors of the natural enemies of RDV insect vectors. Herein, we determined the effects of these two volatiles on the olfactory and predatory behaviors of Cyrtorhinus lividipennis (Hemiptera: Miridae), an important predator of RDV insect vectors in rice paddies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!