Influence of chemical treatments on adhesion properties of hemp fibres.

J Colloid Interface Sci

Groupe d'Etude des Matériaux Hétérogènes, Ecole Nationale Supérieure de Céramique Industrielle, Limoges, France.

Published: April 2011

In addition to be an environmentally friendly material, hemp fibres are also inexpensive reinforcements in thermoplastics or concrete composites, due to their intrinsic mechanical, thermal and acoustic properties. The morphology of hemp fibres has been chemically modified in order to enhance the matrix/fibre interface and has been examined by Scanning Electron Microscopy (SEM). In this paper, Gas Chromatography (GC) and Atomic Force Microscopy (AFM) were used to investigate the influence of treatments on the composition of hemp fibres and also on the micro-adhesive interactions between a silica colloidal probe and the surface of the fibres using Chemical Force Microscopy (CFM). Microscopy studies and chemical analysis showed that each treatment tends to lead to a morphology of interconnected web-like structure of hemp fibres. It was found that on an average, the adhesion force, contribution of capillary force and Van der Waals' forces, is higher in the case of NaOH treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.12.066DOI Listing

Publication Analysis

Top Keywords

hemp fibres
20
force microscopy
8
fibres
6
hemp
5
influence chemical
4
chemical treatments
4
treatments adhesion
4
adhesion properties
4
properties hemp
4
fibres addition
4

Similar Publications

Abaca ( Nee) is the primary source of manila hemp fiber, a vital industrial product for the country. Previous studies have relied on molecular markers designed for other species or distant genera like rice, limiting accurate genetic characterization and germplasm conservation. To address this, we developed 50 genome-specific molecular markers based on the recently released whole genome sequence assembly of Abaca var.

View Article and Find Full Text PDF

Microstructural Characteristics of Cellulosic Fiber-Reinforced Cement Composite.

Materials (Basel)

December 2024

Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.

The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.

View Article and Find Full Text PDF

Inflammation is the critical component of neuropathic pain; therefore, this study aimed to assess the potential anti-inflammatory effects of L. extracts in a vincristine-induced model of neuropathic pain. The effects of different doses (5.

View Article and Find Full Text PDF

Rare-Earth Pretreatment Improves Performance of Reactive Dye Argazol Navy Blue on Banana-Fiber Fabric.

Molecules

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, Qiqihar 161006, China.

At present, the use of conventional reactive dyes on banana-fiber fabric leads to the problem of excessive salt consumption, which is not conducive to environmental protection. In this experimental study, rare-earth-pretreated banana-fiber fabric was dyed with the reactive dye Argazol Navy Blue. The rare-earth pretreatment was carried out to reduce the level of salt consumption, improve dyeing and fixation rates, and reduce the treatment burden of printing and dyeing wastewater.

View Article and Find Full Text PDF

Clarification of Bio-Degumming Enzymes Based on a Visual Analysis of the Hemp Roving Structure.

Polymers (Basel)

December 2024

Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!