Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815313PMC
http://dx.doi.org/10.1111/j.1751-7915.2009.00151.xDOI Listing

Publication Analysis

Top Keywords

hydrocarbon-degrading bacteria
4
bacteria oil-spill
4
oil-spill clean-up
4
clean-up crew
4
hydrocarbon-degrading
1
oil-spill
1
clean-up
1
crew
1

Similar Publications

Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation.

Toxics

December 2024

Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.

Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.

View Article and Find Full Text PDF

The bioremediation method is considered an economical and environmentally friendly strategy for the remediation of oil-contaminated soils. However, some oil field areas have extreme environmental conditions that make it difficult to establish microbes for bioreme-diation. In this study, bacteria were isolated from oil-contaminated soils of the Dehloran oil fields, which have very harsh soil and weather conditions.

View Article and Find Full Text PDF

Active phytoextraction of toluene shifts the microbiome and enhances degradation capacity in hybrid poplar.

J Environ Manage

January 2025

School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:

Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

Regulation mechanism of the long-chain -alkane monooxygenase gene in RAG-1.

Appl Environ Microbiol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, Tianjin, China.

Unlabelled: As toxic pollutants, -alkanes are pervasively distributed in most environmental matrices. Although the alkane monooxygenase AlmA plays a critical role in the metabolic pathway of solid long-chain -alkanes (≥C) that are extremely difficult to degrade, the mechanism regulating this process remains unclear. Here, we characterized the function of AlmA in RAG-1, which was mainly involved in the degradation of long-chain -alkanes (C-C), among which, -C induced the promoter activity most.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!