Signal recognition particle (SRP)-dependent protein targeting is a universally conserved process that delivers proteins to the bacterial cytoplasmic membrane or to the endoplasmic reticulum membrane in eukaryotes. Crucial during targeting is the transfer of the ribosome-nascent chain complex (RNC) from SRP to the Sec translocon. In eukaryotes, this step is co-ordinated by the SRβ subunit of the SRP receptor (SR), which probably senses a vacant translocon by direct interaction with the translocon. Bacteria lack the SRβ subunit and how they co-ordinate RNC transfer is unknown. By site-directed cross-linking and fluorescence resonance energy transfer (FRET) analyses, we show that FtsY, the bacterial SRα homologue, binds to the exposed C4/C5 loops of SecY, the central component of the bacterial Sec translocon. The same loops serve also as binding sites for SecA and the ribosome. The FtsY-SecY interaction involves at least the A domain of FtsY, which attributes an important function to this so far ill-defined domain. Binding of FtsY to SecY residues, which are also used by SecA and the ribosome, probably allows FtsY to sense an available translocon and to align the incoming SRP-RNC with the protein conducting channel. Thus, the Escherichia coli FtsY encompasses the functions of both the eukaryotic SRα and SRβ subunits in one single protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0854.2011.01167.x | DOI Listing |
J Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.
View Article and Find Full Text PDF3 Biotech
January 2025
Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India.
During November-December of 2019, severe witches' broom along with little leaf and stunting symptoms was observed in at Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh with an average disease incidence of 20%. An amplicon of ~ 1.3 kb of 16S rRNA gene was amplified in symptomatic .
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2024
South Ural State University, 454080 Chelyabinsk, Russia.
The SecM leader peptide regulates translation of the SecA protein, being a part of the Sec translocase, that reversibly arrests the ribosome. In the present study the structure of the SecM complex with the E. coli A/A,P/P-ribosome was obtained by means of docking and molecular dynamics simulation methods.
View Article and Find Full Text PDFJ Biol Chem
October 2024
Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!